/* This file is part of Repetier-Firmware. Repetier-Firmware is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Repetier-Firmware is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Repetier-Firmware. If not, see . */ #define UI_MAIN 1 #include "Repetier.h" // The uimenu.h declares static variables of menus, which must be declared only once. // It does not define interfaces for other modules, so should never be included elsewhere #include "uimenu.h" extern const int8_t encoder_table[16] PROGMEM ; #include #include #include #include #if FEATURE_SERVO > 0 && UI_SERVO_CONTROL > 0 #if UI_SERVO_CONTROL == 1 && defined(SERVO0_NEUTRAL_POS) uint16_t servoPosition = SERVO0_NEUTRAL_POS; #elif UI_SERVO_CONTROL == 2 && defined(SERVO1_NEUTRAL_POS) uint16_t servoPosition = SERVO1_NEUTRAL_POS; #elif UI_SERVO_CONTROL == 3 && defined(SERVO2_NEUTRAL_POS) uint16_t servoPosition = SERVO2_NEUTRAL_POS; #elif UI_SERVO_CONTROL == 4 && defined(SERVO3_NEUTRAL_POS) uint16_t servoPosition = SERVO3_NEUTRAL_POS; #else uint16_t servoPosition = 1500; #endif #endif #if BEEPER_TYPE==2 && defined(UI_HAS_I2C_KEYS) && UI_I2C_KEY_ADDRESS!=BEEPER_ADDRESS #error Beeper address and i2c key address must be identical #else #if BEEPER_TYPE==2 #define UI_I2C_KEY_ADDRESS BEEPER_ADDRESS #endif #endif static TemperatureController *currHeaterForSetup; // pointer to extruder or heatbed temperature controller #if UI_AUTORETURN_TO_MENU_AFTER!=0 long ui_autoreturn_time=0; #endif #if FEATURE_BABYSTEPPING int zBabySteps = 0; #endif void beep(uint8_t duration,uint8_t count) { #if FEATURE_BEEPER #if BEEPER_TYPE!=0 #if BEEPER_TYPE==1 && defined(BEEPER_PIN) && BEEPER_PIN>=0 SET_OUTPUT(BEEPER_PIN); #endif #if BEEPER_TYPE==2 HAL::i2cStartWait(BEEPER_ADDRESS+I2C_WRITE); #if UI_DISPLAY_I2C_CHIPTYPE==1 HAL::i2cWrite( 0x14); // Start at port a #endif #endif for(uint8_t i=0; i < count; i++) { #if BEEPER_TYPE==1 && defined(BEEPER_PIN) && BEEPER_PIN>=0 #if defined(BEEPER_TYPE_INVERTING) && BEEPER_TYPE_INVERTING WRITE(BEEPER_PIN,LOW); #else WRITE(BEEPER_PIN,HIGH); #endif #else #if UI_DISPLAY_I2C_CHIPTYPE==0 #if BEEPER_ADDRESS == UI_DISPLAY_I2C_ADDRESS HAL::i2cWrite(uid.outputMask & ~BEEPER_PIN); #else HAL::i2cWrite(~BEEPER_PIN); #endif #endif #if UI_DISPLAY_I2C_CHIPTYPE==1 HAL::i2cWrite((BEEPER_PIN) | uid.outputMask); HAL::i2cWrite(((BEEPER_PIN) | uid.outputMask)>>8); #endif #endif HAL::delayMilliseconds(duration); #if BEEPER_TYPE==1 && defined(BEEPER_PIN) && BEEPER_PIN>=0 #if defined(BEEPER_TYPE_INVERTING) && BEEPER_TYPE_INVERTING WRITE(BEEPER_PIN,HIGH); #else WRITE(BEEPER_PIN,LOW); #endif #else #if UI_DISPLAY_I2C_CHIPTYPE==0 #if BEEPER_ADDRESS == UI_DISPLAY_I2C_ADDRESS HAL::i2cWrite((BEEPER_PIN) | uid.outputMask); #else HAL::i2cWrite(255); #endif #endif #if UI_DISPLAY_I2C_CHIPTYPE==1 HAL::i2cWrite( uid.outputMask); HAL::i2cWrite(uid.outputMask>>8); #endif #endif HAL::delayMilliseconds(duration); } #if BEEPER_TYPE==2 HAL::i2cStop(); #endif #endif #endif } bool UIMenuEntry::showEntry() const { bool ret = true; uint8_t f, f2; f = HAL::readFlashByte((PGM_P)&filter); if(f != 0) ret = (f & Printer::menuMode) != 0; if(ret && (f2 = HAL::readFlashByte((PGM_P)&nofilter)) != 0) ret = (f2 & Printer::menuMode) == 0; return ret; } #if UI_DISPLAY_TYPE != NO_DISPLAY UIDisplay uid; char displayCache[UI_ROWS][MAX_COLS+1]; // Menu up sign - code 1 // ..*.. 4 // .***. 14 // *.*.* 21 // ..*.. 4 // ***.. 28 // ..... 0 // ..... 0 // ..... 0 const uint8_t character_back[8] PROGMEM = {4,14,21,4,28,0,0,0}; // Degrees sign - code 2 // ..*.. 4 // .*.*. 10 // ..*.. 4 // ..... 0 // ..... 0 // ..... 0 // ..... 0 // ..... 0 const uint8_t character_degree[8] PROGMEM = {4,10,4,0,0,0,0,0}; // selected - code 3 // ..... 0 // ***** 31 // ***** 31 // ***** 31 // ***** 31 // ***** 31 // ***** 31 // ..... 0 // ..... 0 const uint8_t character_selected[8] PROGMEM = {0,31,31,31,31,31,0,0}; // unselected - code 4 // ..... 0 // ***** 31 // *...* 17 // *...* 17 // *...* 17 // *...* 17 // ***** 31 // ..... 0 // ..... 0 const uint8_t character_unselected[8] PROGMEM = {0,31,17,17,17,31,0,0}; // unselected - code 5 // ..*.. 4 // .*.*. 10 // .*.*. 10 // .*.*. 10 // .*.*. 10 // .***. 14 // ***** 31 // ***** 31 // .***. 14 const uint8_t character_temperature[8] PROGMEM = {4,10,10,10,14,31,31,14}; // unselected - code 6 // ..... 0 // ***.. 28 // ***** 31 // *...* 17 // *...* 17 // ***** 31 // ..... 0 // ..... 0 const uint8_t character_folder[8] PROGMEM = {0,28,31,17,17,31,0,0}; // printer ready - code 7 // *...* 17 // .*.*. 10 // ..*.. 4 // *...* 17 // ..*.. 4 // .*.*. 10 // *...* 17 // *...* 17 const byte character_ready[8] PROGMEM = {17,10,4,17,4,10,17,17}; const long baudrates[] PROGMEM = {9600,14400,19200,28800,38400,56000,57600,76800,111112,115200,128000,230400,250000,256000, 460800,500000,921600,1000000,1500000,0 }; #define LCD_ENTRYMODE 0x04 /**< Set entrymode */ /** @name GENERAL COMMANDS */ /*@{*/ #define LCD_CLEAR 0x01 /**< Clear screen */ #define LCD_HOME 0x02 /**< Cursor move to first digit */ /*@}*/ /** @name ENTRYMODES */ /*@{*/ #define LCD_ENTRYMODE 0x04 /**< Set entrymode */ #define LCD_INCREASE LCD_ENTRYMODE | 0x02 /**< Set cursor move direction -- Increase */ #define LCD_DECREASE LCD_ENTRYMODE | 0x00 /**< Set cursor move direction -- Decrease */ #define LCD_DISPLAYSHIFTON LCD_ENTRYMODE | 0x01 /**< Display is shifted */ #define LCD_DISPLAYSHIFTOFF LCD_ENTRYMODE | 0x00 /**< Display is not shifted */ /*@}*/ /** @name DISPLAYMODES */ /*@{*/ #define LCD_DISPLAYMODE 0x08 /**< Set displaymode */ #define LCD_DISPLAYON LCD_DISPLAYMODE | 0x04 /**< Display on */ #define LCD_DISPLAYOFF LCD_DISPLAYMODE | 0x00 /**< Display off */ #define LCD_CURSORON LCD_DISPLAYMODE | 0x02 /**< Cursor on */ #define LCD_CURSOROFF LCD_DISPLAYMODE | 0x00 /**< Cursor off */ #define LCD_BLINKINGON LCD_DISPLAYMODE | 0x01 /**< Blinking on */ #define LCD_BLINKINGOFF LCD_DISPLAYMODE | 0x00 /**< Blinking off */ /*@}*/ /** @name SHIFTMODES */ /*@{*/ #define LCD_SHIFTMODE 0x10 /**< Set shiftmode */ #define LCD_DISPLAYSHIFT LCD_SHIFTMODE | 0x08 /**< Display shift */ #define LCD_CURSORMOVE LCD_SHIFTMODE | 0x00 /**< Cursor move */ #define LCD_RIGHT LCD_SHIFTMODE | 0x04 /**< Right shift */ #define LCD_LEFT LCD_SHIFTMODE | 0x00 /**< Left shift */ /*@}*/ /** @name DISPLAY_CONFIGURATION */ /*@{*/ #define LCD_CONFIGURATION 0x20 /**< Set function */ #define LCD_8BIT LCD_CONFIGURATION | 0x10 /**< 8 bits interface */ #define LCD_4BIT LCD_CONFIGURATION | 0x00 /**< 4 bits interface */ #define LCD_2LINE LCD_CONFIGURATION | 0x08 /**< 2 line display */ #define LCD_1LINE LCD_CONFIGURATION | 0x00 /**< 1 line display */ #define LCD_5X10 LCD_CONFIGURATION | 0x04 /**< 5 X 10 dots */ #define LCD_5X7 LCD_CONFIGURATION | 0x00 /**< 5 X 7 dots */ #define LCD_SETCGRAMADDR 0x40 #define lcdPutChar(value) lcdWriteByte(value,1) #define lcdCommand(value) lcdWriteByte(value,0) static const uint8_t LCDLineOffsets[] PROGMEM = UI_LINE_OFFSETS; static const char versionString[] PROGMEM = UI_VERSION_STRING; #if UI_DISPLAY_TYPE == DISPLAY_I2C // ============= I2C LCD Display driver ================ inline void lcdStartWrite() { HAL::i2cStartWait(UI_DISPLAY_I2C_ADDRESS+I2C_WRITE); #if UI_DISPLAY_I2C_CHIPTYPE == 1 HAL::i2cWrite( 0x14); // Start at port a #endif } inline void lcdStopWrite() { HAL::i2cStop(); } void lcdWriteNibble(uint8_t value) { #if UI_DISPLAY_I2C_CHIPTYPE==0 value |= uid.outputMask; #if UI_DISPLAY_D4_PIN==1 && UI_DISPLAY_D5_PIN==2 && UI_DISPLAY_D6_PIN==4 && UI_DISPLAY_D7_PIN==8 HAL::i2cWrite((value) | UI_DISPLAY_ENABLE_PIN); HAL::i2cWrite(value); #else uint8_t v=(value & 1?UI_DISPLAY_D4_PIN:0)|(value & 2?UI_DISPLAY_D5_PIN:0)|(value & 4?UI_DISPLAY_D6_PIN:0)|(value & 8?UI_DISPLAY_D7_PIN:0); HAL::i2cWrite((v) | UI_DISPLAY_ENABLE_PIN); HAL::i2cWrite(v); # #endif #endif #if UI_DISPLAY_I2C_CHIPTYPE==1 unsigned int v=(value & 1?UI_DISPLAY_D4_PIN:0)|(value & 2?UI_DISPLAY_D5_PIN:0)|(value & 4?UI_DISPLAY_D6_PIN:0)|(value & 8?UI_DISPLAY_D7_PIN:0) | uid.outputMask; unsigned int v2 = v | UI_DISPLAY_ENABLE_PIN; HAL::i2cWrite(v2 & 255); HAL::i2cWrite(v2 >> 8); HAL::i2cWrite(v & 255); HAL::i2cWrite(v >> 8); #endif } void lcdWriteByte(uint8_t c,uint8_t rs) { #if UI_DISPLAY_I2C_CHIPTYPE==0 uint8_t mod = (rs?UI_DISPLAY_RS_PIN:0) | uid.outputMask; // | (UI_DISPLAY_RW_PIN); #if UI_DISPLAY_D4_PIN==1 && UI_DISPLAY_D5_PIN==2 && UI_DISPLAY_D6_PIN==4 && UI_DISPLAY_D7_PIN==8 uint8_t value = (c >> 4) | mod; HAL::i2cWrite((value) | UI_DISPLAY_ENABLE_PIN); HAL::i2cWrite(value); value = (c & 15) | mod; HAL::i2cWrite((value) | UI_DISPLAY_ENABLE_PIN); HAL::i2cWrite(value); #else uint8_t value = (c & 16?UI_DISPLAY_D4_PIN:0)|(c & 32?UI_DISPLAY_D5_PIN:0)|(c & 64?UI_DISPLAY_D6_PIN:0)|(c & 128?UI_DISPLAY_D7_PIN:0) | mod; HAL::i2cWrite((value) | UI_DISPLAY_ENABLE_PIN); HAL::i2cWrite(value); value = (c & 1?UI_DISPLAY_D4_PIN:0)|(c & 2?UI_DISPLAY_D5_PIN:0)|(c & 4?UI_DISPLAY_D6_PIN:0)|(c & 8?UI_DISPLAY_D7_PIN:0) | mod; HAL::i2cWrite((value) | UI_DISPLAY_ENABLE_PIN); HAL::i2cWrite(value); #endif #endif #if UI_DISPLAY_I2C_CHIPTYPE==1 unsigned int mod = (rs?UI_DISPLAY_RS_PIN:0) | uid.outputMask; // | (UI_DISPLAY_RW_PIN); unsigned int value = (c & 16?UI_DISPLAY_D4_PIN:0)|(c & 32?UI_DISPLAY_D5_PIN:0)|(c & 64?UI_DISPLAY_D6_PIN:0)|(c & 128?UI_DISPLAY_D7_PIN:0) | mod; unsigned int value2 = (value) | UI_DISPLAY_ENABLE_PIN; HAL::i2cWrite(value2 & 255); HAL::i2cWrite(value2 >>8); HAL::i2cWrite(value & 255); HAL::i2cWrite(value>>8); value = (c & 1?UI_DISPLAY_D4_PIN:0)|(c & 2?UI_DISPLAY_D5_PIN:0)|(c & 4?UI_DISPLAY_D6_PIN:0)|(c & 8?UI_DISPLAY_D7_PIN:0) | mod; value2 = (value) | UI_DISPLAY_ENABLE_PIN; HAL::i2cWrite(value2 & 255); HAL::i2cWrite(value2 >>8); HAL::i2cWrite(value & 255); HAL::i2cWrite(value>>8); #endif } void initializeLCD() { HAL::delayMilliseconds(235); lcdStartWrite(); HAL::i2cWrite(uid.outputMask & 255); #if UI_DISPLAY_I2C_CHIPTYPE==1 HAL::i2cWrite(uid.outputMask >> 8); #endif HAL::delayMicroseconds(20); lcdWriteNibble(0x03); HAL::delayMicroseconds(6000); // I have one LCD for which 4500 here was not long enough. // second try lcdWriteNibble(0x03); HAL::delayMicroseconds(180); // wait // third go! lcdWriteNibble(0x03); HAL::delayMicroseconds(180); // finally, set to 4-bit interface lcdWriteNibble(0x02); HAL::delayMicroseconds(180); // finally, set # lines, font size, etc. lcdCommand(LCD_4BIT | LCD_2LINE | LCD_5X7); lcdCommand(LCD_CLEAR); //- Clear Screen HAL::delayMilliseconds(4); // clear is slow operation lcdCommand(LCD_INCREASE | LCD_DISPLAYSHIFTOFF); //- Entrymode (Display Shift: off, Increment Address Counter) lcdCommand(LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKINGOFF); //- Display on uid.lastSwitch = uid.lastRefresh = HAL::timeInMilliseconds(); uid.createChar(1,character_back); uid.createChar(2,character_degree); uid.createChar(3,character_selected); uid.createChar(4,character_unselected); uid.createChar(5,character_temperature); uid.createChar(6,character_folder); uid.createChar(7,character_ready); lcdStopWrite(); } #endif #if UI_DISPLAY_TYPE == DISPLAY_4BIT || UI_DISPLAY_TYPE == DISPLAY_8BIT void lcdWriteNibble(uint8_t value) { WRITE(UI_DISPLAY_D4_PIN,value & 1); WRITE(UI_DISPLAY_D5_PIN,value & 2); WRITE(UI_DISPLAY_D6_PIN,value & 4); WRITE(UI_DISPLAY_D7_PIN,value & 8); DELAY1MICROSECOND; WRITE(UI_DISPLAY_ENABLE_PIN, HIGH);// enable pulse must be >450ns HAL::delayMicroseconds(2); WRITE(UI_DISPLAY_ENABLE_PIN, LOW); HAL::delayMicroseconds(UI_DELAYPERCHAR); } void lcdWriteByte(uint8_t c,uint8_t rs) { #if false && UI_DISPLAY_RW_PIN >= 0 // not really needed SET_INPUT(UI_DISPLAY_D4_PIN); SET_INPUT(UI_DISPLAY_D5_PIN); SET_INPUT(UI_DISPLAY_D6_PIN); SET_INPUT(UI_DISPLAY_D7_PIN); WRITE(UI_DISPLAY_RW_PIN, HIGH); WRITE(UI_DISPLAY_RS_PIN, LOW); uint8_t busy; do { WRITE(UI_DISPLAY_ENABLE_PIN, HIGH); DELAY1MICROSECOND; busy = READ(UI_DISPLAY_D7_PIN); WRITE(UI_DISPLAY_ENABLE_PIN, LOW); DELAY2MICROSECOND; WRITE(UI_DISPLAY_ENABLE_PIN, HIGH); DELAY2MICROSECOND; WRITE(UI_DISPLAY_ENABLE_PIN, LOW); DELAY2MICROSECOND; } while (busy); SET_OUTPUT(UI_DISPLAY_D4_PIN); SET_OUTPUT(UI_DISPLAY_D5_PIN); SET_OUTPUT(UI_DISPLAY_D6_PIN); SET_OUTPUT(UI_DISPLAY_D7_PIN); WRITE(UI_DISPLAY_RW_PIN, LOW); #endif WRITE(UI_DISPLAY_RS_PIN, rs); WRITE(UI_DISPLAY_D4_PIN, c & 0x10); WRITE(UI_DISPLAY_D5_PIN, c & 0x20); WRITE(UI_DISPLAY_D6_PIN, c & 0x40); WRITE(UI_DISPLAY_D7_PIN, c & 0x80); #if FEATURE_CONTROLLER == CONTROLLER_RADDS HAL::delayMicroseconds(10); #else HAL::delayMicroseconds(2); #endif WRITE(UI_DISPLAY_ENABLE_PIN, HIGH); // enable pulse must be >450ns #if FEATURE_CONTROLLER == CONTROLLER_RADDS HAL::delayMicroseconds(10); #else HAL::delayMicroseconds(2); #endif WRITE(UI_DISPLAY_ENABLE_PIN, LOW); WRITE(UI_DISPLAY_D4_PIN, c & 0x01); WRITE(UI_DISPLAY_D5_PIN, c & 0x02); WRITE(UI_DISPLAY_D6_PIN, c & 0x04); WRITE(UI_DISPLAY_D7_PIN, c & 0x08); HAL::delayMicroseconds(2); WRITE(UI_DISPLAY_ENABLE_PIN, HIGH); // enable pulse must be >450ns HAL::delayMicroseconds(2); WRITE(UI_DISPLAY_ENABLE_PIN, LOW); HAL::delayMicroseconds(100); } #ifdef TRY_AUTOREPAIR_LCD_ERRORS #define HAS_AUTOREPAIR /* Fast repair function for displays loosing their settings. Do not call this if your display has no problems. */ void repairLCD() { // Now we pull both RS and R/W low to begin commands WRITE(UI_DISPLAY_RS_PIN, LOW); WRITE(UI_DISPLAY_ENABLE_PIN, LOW); //put the LCD into 4 bit mode // this is according to the hitachi HD44780 datasheet // figure 24, pg 46 // we start in 8bit mode, try to set 4 bit mode // at this point we are in 8 bit mode but of course in this // interface 4 pins are dangling unconnected and the values // on them don't matter for these instructions. WRITE(UI_DISPLAY_RS_PIN, LOW); HAL::delayMicroseconds(20); lcdWriteNibble(0x03); HAL::delayMicroseconds(5000); // I have one LCD for which 4500 here was not long enough. // second try //lcdWriteNibble(0x03); //HAL::delayMicroseconds(5000); // wait // third go! //lcdWriteNibble(0x03); //HAL::delayMicroseconds(160); // finally, set to 4-bit interface lcdWriteNibble(0x02); HAL::delayMicroseconds(160); // finally, set # lines, font size, etc. lcdCommand(LCD_4BIT | LCD_2LINE | LCD_5X7); lcdCommand(LCD_INCREASE | LCD_DISPLAYSHIFTOFF); //- Entrymode (Display Shift: off, Increment Address Counter) lcdCommand(LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKINGOFF); //- Display on uid.lastSwitch = uid.lastRefresh = HAL::timeInMilliseconds(); uid.createChar(1, character_back); uid.createChar(2, character_degree); uid.createChar(3, character_selected); uid.createChar(4, character_unselected); uid.createChar(5, character_temperature); uid.createChar(6, character_folder); uid.createChar(7, character_ready); } #endif void initializeLCD() { // SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION! // according to datasheet, we need at least 40ms after power rises above 2.7V // before sending commands. Arduino can turn on way before 4.5V. // is this delay long enough for all cases?? HAL::delayMilliseconds(235); SET_OUTPUT(UI_DISPLAY_D4_PIN); SET_OUTPUT(UI_DISPLAY_D5_PIN); SET_OUTPUT(UI_DISPLAY_D6_PIN); SET_OUTPUT(UI_DISPLAY_D7_PIN); SET_OUTPUT(UI_DISPLAY_RS_PIN); #if UI_DISPLAY_RW_PIN > -1 SET_OUTPUT(UI_DISPLAY_RW_PIN); #endif SET_OUTPUT(UI_DISPLAY_ENABLE_PIN); // Now we pull both RS and R/W low to begin commands WRITE(UI_DISPLAY_RS_PIN, LOW); WRITE(UI_DISPLAY_ENABLE_PIN, LOW); //put the LCD into 4 bit mode // this is according to the hitachi HD44780 datasheet // figure 24, pg 46 // we start in 8bit mode, try to set 4 bit mode // at this point we are in 8 bit mode but of course in this // interface 4 pins are dangling unconnected and the values // on them don't matter for these instructions. WRITE(UI_DISPLAY_RS_PIN, LOW); HAL::delayMicroseconds(20); lcdWriteNibble(0x03); HAL::delayMicroseconds(5000); // I have one LCD for which 4500 here was not long enough. // second try lcdWriteNibble(0x03); HAL::delayMicroseconds(5000); // wait // third go! lcdWriteNibble(0x03); HAL::delayMicroseconds(160); // finally, set to 4-bit interface lcdWriteNibble(0x02); HAL::delayMicroseconds(160); // finally, set # lines, font size, etc. lcdCommand(LCD_4BIT | LCD_2LINE | LCD_5X7); lcdCommand(LCD_CLEAR); //- Clear Screen HAL::delayMilliseconds(3); // clear is slow operation lcdCommand(LCD_INCREASE | LCD_DISPLAYSHIFTOFF); //- Entrymode (Display Shift: off, Increment Address Counter) lcdCommand(LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKINGOFF); //- Display on uid.lastSwitch = uid.lastRefresh = HAL::timeInMilliseconds(); uid.createChar(1, character_back); uid.createChar(2, character_degree); uid.createChar(3, character_selected); uid.createChar(4, character_unselected); uid.createChar(5, character_temperature); uid.createChar(6, character_folder); uid.createChar(7, character_ready); } // ----------- end direct LCD driver #endif #if UI_DISPLAY_TYPE < DISPLAY_ARDUINO_LIB void UIDisplay::printRow(uint8_t r,char *txt,char *txt2,uint8_t changeAtCol) { changeAtCol = RMath::min(UI_COLS, changeAtCol); uint8_t col = 0; // Set row if(r >= UI_ROWS) return; #if UI_DISPLAY_TYPE == DISPLAY_I2C lcdStartWrite(); #endif lcdWriteByte(128 + HAL::readFlashByte((const char *)&LCDLineOffsets[r]), 0); // Position cursor char c; while((c = *txt) != 0x00 && col < changeAtCol) { txt++; lcdPutChar(c); col++; } while(col < changeAtCol) { lcdPutChar(' '); col++; } if(txt2 != NULL) { while((c = *txt2) != 0x00 && col < UI_COLS) { txt2++; lcdPutChar(c); col++; } while(col < UI_COLS) { lcdPutChar(' '); col++; } } #if UI_DISPLAY_TYPE == DISPLAY_I2C lcdStopWrite(); #endif #if UI_HAS_KEYS==1 && UI_HAS_I2C_ENCODER>0 uiCheckSlowEncoder(); #endif } #endif #if UI_DISPLAY_TYPE == DISPLAY_ARDUINO_LIB // Use LiquidCrystal library instead #include LiquidCrystal lcd(UI_DISPLAY_RS_PIN, UI_DISPLAY_RW_PIN,UI_DISPLAY_ENABLE_PIN,UI_DISPLAY_D4_PIN,UI_DISPLAY_D5_PIN,UI_DISPLAY_D6_PIN,UI_DISPLAY_D7_PIN); void UIDisplay::createChar(uint8_t location,const uint8_t charmap[]) { location &= 0x7; // we only have 8 locations 0-7 uint8_t data[8]; for (int i = 0; i < 8; i++) { data[i] = pgm_read_byte(&(charmap[i])); } lcd.createChar(location, data); } void UIDisplay::printRow(uint8_t r,char *txt,char *txt2,uint8_t changeAtCol) { changeAtCol = RMath::min(UI_COLS,changeAtCol); uint8_t col = 0; // Set row if(r >= UI_ROWS) return; lcd.setCursor(0,r); char c; while((c = *txt) != 0x00 && col < changeAtCol) { txt++; lcd.write(c); col++; } while(col < changeAtCol) { lcd.write(' '); col++; } if(txt2 != NULL) { while((c = *txt2) != 0x00 && col < UI_COLS) { txt2++; lcd.write(c); col++; } while(col < UI_COLS) { lcd.write(' '); col++; } } #if UI_HAS_KEYS==1 && UI_HAS_I2C_ENCODER>0 uiCheckSlowEncoder(); #endif } void initializeLCD() { lcd.begin(UI_COLS,UI_ROWS); uid.lastSwitch = uid.lastRefresh = HAL::timeInMilliseconds(); uid.createChar(1,character_back); uid.createChar(2,character_degree); uid.createChar(3,character_selected); uid.createChar(4,character_unselected); } // ------------------ End LiquidCrystal library as LCD driver #endif // UI_DISPLAY_TYPE == DISPLAY_ARDUINO_LIB #if UI_DISPLAY_TYPE == DISPLAY_U8G //u8glib #if defined(U8GLIB_ST7920) || defined(U8GLIB_SSD1306_SW_SPI) #define UI_SPI_SCK UI_DISPLAY_D4_PIN #define UI_SPI_MOSI UI_DISPLAY_ENABLE_PIN #define UI_SPI_CS UI_DISPLAY_RS_PIN #endif #include "u8glib_ex.h" #include "logo.h" u8g_t u8g; u8g_uint_t u8_tx = 0, u8_ty = 0; void u8PrintChar(char c) { switch((uint8_t)c) { case 0x7E: // right arrow u8g_SetFont(&u8g, u8g_font_6x12_67_75); u8_tx += u8g_DrawGlyph(&u8g, u8_tx, u8_ty, 0x52); u8g_SetFont(&u8g, UI_FONT_DEFAULT); break; case CHAR_SELECTOR: u8g_SetFont(&u8g, u8g_font_6x12_67_75); u8_tx += u8g_DrawGlyph(&u8g, u8_tx, u8_ty, 0xb7); u8g_SetFont(&u8g, UI_FONT_DEFAULT); break; case CHAR_SELECTED: u8g_SetFont(&u8g, u8g_font_6x12_67_75); u8_tx += u8g_DrawGlyph(&u8g, u8_tx, u8_ty, 0xb6); u8g_SetFont(&u8g, UI_FONT_DEFAULT); break; case 253: //shift one pixel to right u8_tx++; break; default: u8_tx += u8g_DrawGlyph(&u8g, u8_tx, u8_ty, c); } } void printU8GRow(uint8_t x,uint8_t y,char *text) { char c; u8_tx = x; u8_ty = y; while((c = *(text++)) != 0) u8PrintChar(c); //version compatible with position adjust // x += u8g_DrawGlyph(&u8g,x,y,c); } void UIDisplay::printRow(uint8_t r,char *txt,char *txt2,uint8_t changeAtCol) { changeAtCol = RMath::min(UI_COLS,changeAtCol); uint8_t col = 0; // Set row if(r >= UI_ROWS) return; int y = r * UI_FONT_HEIGHT; if(!u8g_IsBBXIntersection(&u8g,0,y,UI_LCD_WIDTH,UI_FONT_HEIGHT+2)) return; // row not visible u8_tx = 0; u8_ty = y+UI_FONT_HEIGHT; //set position bool highlight = ((uint8_t)(*txt) == CHAR_SELECTOR) || ((uint8_t)(*txt) == CHAR_SELECTED); if(highlight) { u8g_SetColorIndex(&u8g,1); u8g_draw_box(&u8g, 0, y + 1, u8g_GetWidth(&u8g), UI_FONT_HEIGHT + 1); u8g_SetColorIndex(&u8g, 0); } char c; while((c = *(txt++)) != 0 && col < changeAtCol) { u8PrintChar(c); col++; } if(txt2 != NULL) { col = changeAtCol; u8_tx = col*UI_FONT_WIDTH; //set position while((c=*(txt2++)) != 0 && col < UI_COLS) { u8PrintChar(c); col++; } } if(highlight) { u8g_SetColorIndex(&u8g,1); } #if UI_HAS_KEYS==1 && UI_HAS_I2C_ENCODER>0 uiCheckSlowEncoder(); #endif } void initializeLCD() { #ifdef U8GLIB_ST7920 u8g_InitSPI(&u8g,&u8g_dev_st7920_128x64_sw_spi, UI_DISPLAY_D4_PIN, UI_DISPLAY_ENABLE_PIN, UI_DISPLAY_RS_PIN, U8G_PIN_NONE, U8G_PIN_NONE); #endif #ifdef U8GLIB_SSD1306_I2C u8g_InitI2C(&u8g,&u8g_dev_ssd1306_128x64_i2c,U8G_I2C_OPT_NONE); #endif #ifdef U8GLIB_SSD1306_SW_SPI u8g_InitSPI(&u8g,&u8g_dev_ssd1306_128x64_sw_spi, UI_DISPLAY_D4_PIN, UI_DISPLAY_ENABLE_PIN, UI_DISPLAY_RS_PIN, U8G_PIN_NONE, U8G_PIN_NONE); #endif #ifdef U8GLIB_KS0108_FAST u8g_Init8Bit(&u8g,&u8g_dev_ks0108_128x64_fast,UI_DISPLAY_D0_PIN,UI_DISPLAY_D1_PIN,UI_DISPLAY_D2_PIN,UI_DISPLAY_D3_PIN,UI_DISPLAY_D4_PIN,UI_DISPLAY_D5_PIN,UI_DISPLAY_D6_PIN,UI_DISPLAY_D7_PIN,UI_DISPLAY_ENABLE_PIN,UI_DISPLAY_CS1,UI_DISPLAY_CS2, UI_DISPLAY_DI,UI_DISPLAY_RW_PIN,UI_DISPLAY_RESET_PIN); #endif #ifdef U8GLIB_KS0108 u8g_Init8Bit(&u8g,&u8g_dev_ks0108_128x64,UI_DISPLAY_D0_PIN,UI_DISPLAY_D1_PIN,UI_DISPLAY_D2_PIN,UI_DISPLAY_D3_PIN,UI_DISPLAY_D4_PIN,UI_DISPLAY_D5_PIN,UI_DISPLAY_D6_PIN,UI_DISPLAY_D7_PIN,UI_DISPLAY_ENABLE_PIN,UI_DISPLAY_CS1,UI_DISPLAY_CS2, UI_DISPLAY_DI,UI_DISPLAY_RW_PIN,UI_DISPLAY_RESET_PIN); #endif #ifdef U8GLIB_ST7565_NHD_C2832_HW_SPI u8g_InitHWSPI(&u8g,&u8g_dev_st7565_nhd_c12864_hw_spi,UI_DISPLAY_RS_PIN,UI_DISPLAY_D5_PIN,U8G_PIN_NONE); #endif u8g_Begin(&u8g); #ifdef UI_ROTATE_180 u8g_SetRot180(&u8g); #endif u8g_FirstPage(&u8g); do { u8g_SetColorIndex(&u8g, 0); } while( u8g_NextPage(&u8g) ); u8g_SetFont(&u8g, UI_FONT_DEFAULT); u8g_SetColorIndex(&u8g, 1); uid.lastSwitch = uid.lastRefresh = HAL::timeInMilliseconds(); } // ------------------ End u8GLIB library as LCD driver #endif // UI_DISPLAY_TYPE == DISPLAY_U8G #if UI_DISPLAY_TYPE == DISPLAY_GAMEDUINO2 #include "gameduino2.h" #endif UIDisplay::UIDisplay() { } #if UI_ANIMATION void slideIn(uint8_t row,FSTRINGPARAM(text)) { char *empty=""; int8_t i = 0; uid.col=0; uid.addStringP(text); uid.printCols[uid.col]=0; for(i=UI_COLS-1; i>=0; i--) { uid.printRow(row,empty,uid.printCols,i); HAL::pingWatchdog(); HAL::delayMilliseconds(10); } } #endif // UI_ANIMATION void UIDisplay::initialize() { oldMenuLevel = -2; #ifdef COMPILE_I2C_DRIVER uid.outputMask = UI_DISPLAY_I2C_OUTPUT_START_MASK; #if UI_DISPLAY_I2C_CHIPTYPE==0 && BEEPER_TYPE==2 && BEEPER_PIN>=0 #if BEEPER_ADDRESS == UI_DISPLAY_I2C_ADDRESS uid.outputMask |= BEEPER_PIN; #endif #endif HAL::i2cInit(UI_I2C_CLOCKSPEED); #if UI_DISPLAY_I2C_CHIPTYPE==1 // set direction of pins HAL::i2cStart(UI_DISPLAY_I2C_ADDRESS + I2C_WRITE); HAL::i2cWrite(0); // IODIRA HAL::i2cWrite(~(UI_DISPLAY_I2C_OUTPUT_PINS & 255)); HAL::i2cWrite(~(UI_DISPLAY_I2C_OUTPUT_PINS >> 8)); HAL::i2cStop(); // Set pullups according to UI_DISPLAY_I2C_PULLUP HAL::i2cStart(UI_DISPLAY_I2C_ADDRESS+I2C_WRITE); HAL::i2cWrite(0x0C); // GPPUA HAL::i2cWrite(UI_DISPLAY_I2C_PULLUP & 255); HAL::i2cWrite(UI_DISPLAY_I2C_PULLUP >> 8); HAL::i2cStop(); #endif #endif flags = 0; menuLevel = 0; shift = -2; menuPos[0] = 0; lastAction = 0; delayedAction = 0; lastButtonAction = 0; activeAction = 0; statusMsg[0] = 0; uiInitKeys(); cwd[0] = '/'; cwd[1] = 0; folderLevel = 0; UI_STATUS(UI_TEXT_PRINTER_READY); #if UI_DISPLAY_TYPE != NO_DISPLAY initializeLCD(); #if defined(USER_KEY1_PIN) && USER_KEY1_PIN > -1 UI_KEYS_INIT_BUTTON_LOW(USER_KEY1_PIN); #endif #if defined(USER_KEY2_PIN) && USER_KEY2_PIN > -1 UI_KEYS_INIT_BUTTON_LOW(USER_KEY2_PIN); #endif #if defined(USER_KEY3_PIN) && USER_KEY3_PIN > -1 UI_KEYS_INIT_BUTTON_LOW(USER_KEY3_PIN); #endif #if defined(USER_KEY4_PIN) && USER_KEY4_PIN > -1 UI_KEYS_INIT_BUTTON_LOW(USER_KEY4_PIN); #endif #if UI_DISPLAY_TYPE == DISPLAY_I2C // I don't know why but after power up the lcd does not come up // but if I reinitialize i2c and the lcd again here it works. HAL::delayMilliseconds(10); HAL::i2cInit(UI_I2C_CLOCKSPEED); // set direction of pins HAL::i2cStart(UI_DISPLAY_I2C_ADDRESS+I2C_WRITE); HAL::i2cWrite(0); // IODIRA HAL::i2cWrite(~(UI_DISPLAY_I2C_OUTPUT_PINS & 255)); HAL::i2cWrite(~(UI_DISPLAY_I2C_OUTPUT_PINS >> 8)); HAL::i2cStop(); // Set pullups according to UI_DISPLAY_I2C_PULLUP HAL::i2cStart(UI_DISPLAY_I2C_ADDRESS+I2C_WRITE); HAL::i2cWrite(0x0C); // GPPUA HAL::i2cWrite(UI_DISPLAY_I2C_PULLUP & 255); HAL::i2cWrite(UI_DISPLAY_I2C_PULLUP >> 8); HAL::i2cStop(); initializeLCD(); #endif #if UI_DISPLAY_TYPE == DISPLAY_GAMEDUINO2 GD2::startScreen(); #else #if UI_ANIMATION==false || UI_DISPLAY_TYPE == DISPLAY_U8G #if UI_DISPLAY_TYPE == DISPLAY_U8G //u8g picture loop u8g_FirstPage(&u8g); do { u8g_DrawBitmapP(&u8g, 128 - LOGO_WIDTH, 0, ((LOGO_WIDTH + 8) / 8), LOGO_HEIGHT, logo); for(uint8_t y = 0; y < UI_ROWS; y++) displayCache[y][0] = 0; printRowP(0, PSTR("Repetier")); printRowP(1, PSTR("Ver " REPETIER_VERSION)); printRowP(3, PSTR("Machine:")); printRowP(4, PSTR(UI_PRINTER_NAME)); printRowP(5, PSTR(UI_PRINTER_COMPANY)); } while( u8g_NextPage(&u8g) ); //end picture loop #else // not DISPLAY_U8G for(uint8_t y=0; y2 printRowP(UI_ROWS-1, PSTR(UI_PRINTER_COMPANY)); #endif #endif #else slideIn(0, versionString); strcpy(displayCache[0], uid.printCols); slideIn(1, PSTR(UI_PRINTER_NAME)); strcpy(displayCache[1], uid.printCols); #if UI_ROWS>2 slideIn(UI_ROWS-1, PSTR(UI_PRINTER_COMPANY)); strcpy(displayCache[UI_ROWS-1], uid.printCols); #endif #endif #endif // gameduino2 HAL::delayMilliseconds(UI_START_SCREEN_DELAY); #endif #if UI_DISPLAY_I2C_CHIPTYPE==0 && (BEEPER_TYPE==2 || defined(UI_HAS_I2C_KEYS)) // Make sure the beeper is off HAL::i2cStartWait(UI_I2C_KEY_ADDRESS+I2C_WRITE); HAL::i2cWrite(255); // Disable beeper, enable read for other pins. HAL::i2cStop(); #endif } #if UI_DISPLAY_TYPE == DISPLAY_4BIT || UI_DISPLAY_TYPE == DISPLAY_8BIT || UI_DISPLAY_TYPE == DISPLAY_I2C void UIDisplay::createChar(uint8_t location,const uint8_t PROGMEM charmap[]) { location &= 0x7; // we only have 8 locations 0-7 lcdCommand(LCD_SETCGRAMADDR | (location << 3)); for (int i = 0; i < 8; i++) { lcdPutChar(pgm_read_byte(&(charmap[i]))); } } #endif void UIDisplay::waitForKey() { int nextAction = 0; lastButtonAction = 0; while(lastButtonAction == nextAction) { uiCheckSlowKeys(nextAction); } } void UIDisplay::printRowP(uint8_t r,PGM_P txt) { if(r >= UI_ROWS) return; col = 0; addStringP(txt); uid.printCols[col] = 0; printRow(r,uid.printCols,NULL,UI_COLS); } void UIDisplay::addInt(int value,uint8_t digits,char fillChar) { uint8_t dig = 0, neg = 0; if(value < 0) { value = -value; neg = 1; dig++; } char buf[7]; // Assumes 8-bit chars plus zero byte. char *str = &buf[6]; buf[6] = 0; do { unsigned int m = value; value /= 10; char c = m - 10 * value; *--str = c + '0'; dig++; } while(value); if(neg) uid.printCols[col++] = '-'; if(digits < 6) while(dig < digits) { *--str = fillChar; //' '; dig++; } while(*str && col < MAX_COLS) { uid.printCols[col++] = *str; str++; } } void UIDisplay::addLong(long value,char digits) { uint8_t dig = 0,neg = 0; byte addspaces = digits > 0; if (digits < 0) digits = -digits; if(value < 0) { neg = 1; value = -value; dig++; } char buf[13]; // Assumes 8-bit chars plus zero byte. char *str = &buf[12]; buf[12] = 0; do { unsigned long m = value; value /= 10; char c = m - 10 * value; *--str = c + '0'; dig++; } while(value); if(neg) uid.printCols[col++] = '-'; if(addspaces && digits <= 11) while(dig < digits) { *--str = ' '; dig++; } while(*str && col= MAX_COLS) return; number = -number; fixdigits--; } number += pgm_read_float(&roundingTable[digits]); // for correct rounding // Extract the integer part of the number and print it unsigned long int_part = (unsigned long)number; float remainder = number - (float)int_part; addLong(int_part,fixdigits); if(col >= UI_COLS) return; // Print the decimal point, but only if there are digits beyond if (digits > 0) { uid.printCols[col++] = '.'; } // Extract digits from the remainder one at a time while (col < MAX_COLS && digits-- > 0) { remainder *= 10.0; uint8_t toPrint = uint8_t(remainder); uid.printCols[col++] = '0' + toPrint; remainder -= toPrint; } } void UIDisplay::addStringP(FSTRINGPARAM(text)) { while(col < MAX_COLS) { uint8_t c = HAL::readFlashByte(text++); if(c == 0) return; uid.printCols[col++] = c; } } void UIDisplay::addStringOnOff(uint8_t on) { addStringP(on ? ui_text_on : ui_text_off); } void UIDisplay::addChar(const char c) { if(col < UI_COLS) { uid.printCols[col++] = c; } } void UIDisplay::addGCode(GCode *code) { // assume volatile and make copy so we dont "see" multple code lines as we go. //GCode myCode = *code; insuffeicnet memory for this safety check //code = &myCode; addChar('#'); addLong(code->N); if(code->hasM()) { addChar('M'); addLong((long)code->M); } if(code->hasG()) { addChar('G'); addLong((long)code->G); } if(code->hasT()) { addChar('T'); addLong((long)code->T); } if(code->hasX()) { addChar('X'); addFloat(code->X); } if(code->hasY()) { addChar('Y'); addFloat(code->Y); } if(code->hasZ()) { addChar('Z'); addFloat(code->Z); } if(code->hasE()) { addChar('E'); addFloat(code->E); } if(code->hasF()) { addChar('F'); addFloat(code->F); } if(code->hasS()) { addChar('S'); addLong(code->S); } if(code->hasP()) { addChar('P'); addLong(code->P); } #ifdef ARC_SUPPORT if(code->hasI()) { addChar('I'); addFloat(code->I); } if(code->hasJ()) { addChar('J'); addFloat(code->J); } if(code->hasR()) { addChar('R'); addFloat(code->R); } #endif // cannot print string, it isnt part of the gcode structure. //it points to temp memory in a buffer. //if(code->hasSTRING()) } void UIDisplay::parse(const char *txt,bool ram) { static uint8_t beepdelay = 0; int ivalue = 0; float fvalue = 0; while(col < MAX_COLS) { char c = (ram ? *(txt++) : pgm_read_byte(txt++)); if(c == 0) break; // finished if(c != '%') { uid.printCols[col++] = c; continue; } // dynamic parameter, parse meaning and replace char c1 = (ram ? *(txt++) : pgm_read_byte(txt++)); char c2 = (ram ? *(txt++) : pgm_read_byte(txt++)); switch(c1) { case '%': { // print % for input '%%' or '%%%' if(col < UI_COLS) uid.printCols[col++] = '%'; // if data = '%%?' escaped percent, with left over ? char if (c2 != '%') txt--; // Be flexible and accept 2 or 3 chars break; } // case '%' case '?' : // conditional spacer or other char { // If something has been printed, check if the last char is c2. // if not, append c2. // otherwise do nothing. if (col > 0 && col < UI_COLS) { if (uid.printCols[col - 1] != c2) uid.printCols[col++] = c2; } break; } case 'a': // Acceleration settings if(c2 >= 'x' && c2 <= 'z') addFloat(Printer::maxAccelerationMMPerSquareSecond[c2 - 'x'], 5, 0); else if(c2 >= 'X' && c2 <= 'Z') addFloat(Printer::maxTravelAccelerationMMPerSquareSecond[c2-'X'], 5, 0); else if(c2 == 'j') addFloat(Printer::maxJerk, 3, 1); #if DRIVE_SYSTEM!=DELTA else if(c2 == 'J') addFloat(Printer::maxZJerk, 3, 1); #endif break; case 'd': if(c2 == 'o') addStringOnOff(Printer::debugEcho()); else if(c2 == 'i') addStringOnOff(Printer::debugInfo()); else if(c2 == 'e') addStringOnOff(Printer::debugErrors()); else if(c2 == 'd') addStringOnOff(Printer::debugDryrun()); break; case 'e': // Extruder temperature { if(c2 == 'I') { //give integer display char c2=(ram ? *(txt++) : pgm_read_byte(txt++)); ivalue=0; } else ivalue = UI_TEMP_PRECISION; if(c2 == 'r') // Extruder relative mode { addStringP(Printer::relativeExtruderCoordinateMode ? ui_yes : ui_no); break; } uint8_t eid = NUM_EXTRUDER; // default = BED if c2 not specified extruder number if(c2 == 'c') eid = Extruder::current->id; else if(c2 >= '0' && c2 <= '9') eid = c2 - '0'; if(Printer::isAnyTempsensorDefect()) { if(eid == 0 && ++beepdelay > 30) beepdelay = 0; // beep every 30 seconds if(beepdelay == 1) BEEP_LONG; if(tempController[eid]->isSensorDefect()) { addStringP(PSTR(" def ")); break; } else if(tempController[eid]->isSensorDecoupled()) { addStringP(PSTR(" dec ")); break; } } #if EXTRUDER_JAM_CONTROL if(tempController[eid]->isJammed()) { if(++beepdelay > 10) beepdelay = 0; // beep every 10 seconds if(beepdelay == 1) BEEP_LONG; addStringP(PSTR(" jam ")); break; } #endif if(c2 == 'c') fvalue = Extruder::current->tempControl.currentTemperatureC; else if(c2 >= '0' && c2 <= '9') fvalue=extruder[c2 - '0'].tempControl.currentTemperatureC; else if(c2 == 'b') fvalue = Extruder::getHeatedBedTemperature(); else if(c2 == 'B') { ivalue = 0; fvalue = Extruder::getHeatedBedTemperature(); } addFloat(fvalue, 3, ivalue); break; } case 'E': // Target extruder temperature if(c2 == 'c') fvalue = Extruder::current->tempControl.targetTemperatureC; else if(c2 >= '0' && c2 <= '9') fvalue = extruder[c2 - '0'].tempControl.targetTemperatureC; #if HAVE_HEATED_BED else if(c2 == 'b') fvalue = heatedBedController.targetTemperatureC; #endif addFloat(fvalue, 3, 0 /*UI_TEMP_PRECISION*/); break; #if FAN_PIN > -1 && FEATURE_FAN_CONTROL case 'F': // FAN speed if(c2 == 's') addInt(floor(Printer::getFanSpeed() * 100 / 255 + 0.5f), 3); if(c2=='i') addStringP((Printer::flag2 & PRINTER_FLAG2_IGNORE_M106_COMMAND) ? ui_selected : ui_unselected); break; #endif case 'f': if(c2 >= 'x' && c2 <= 'z') addFloat(Printer::maxFeedrate[c2 - 'x'], 5, 0); else if(c2 >= 'X' && c2 <= 'Z') addFloat(Printer::homingFeedrate[c2 - 'X'], 5, 0); break; case 'i': if(c2 == 's') addInt(stepperInactiveTime / 60000, 3); else if(c2 == 'p') addInt(maxInactiveTime / 60000, 3); break; case 'O': // ops related stuff break; case 'l': if(c2 == 'a') addInt(lastAction,4); #if defined(CASE_LIGHTS_PIN) && CASE_LIGHTS_PIN >= 0 else if(c2 == 'o') addStringOnOff(READ(CASE_LIGHTS_PIN)); // Lights on/off #endif #if FEATURE_AUTOLEVEL else if(c2 == 'l') addStringOnOff((Printer::isAutolevelActive())); // Autolevel on/off #endif break; case 'o': if(c2 == 's') { #if SDSUPPORT if(sd.sdactive && sd.sdmode) { addStringP(PSTR( UI_TEXT_PRINT_POS)); float percent; if(sd.filesize < 2000000) percent = sd.sdpos * 100.0 / sd.filesize; else percent = (sd.sdpos >> 8) * 100.0 / (sd.filesize >> 8); addFloat(percent, 3, 1); if(colid + 1, 1); break; } #if FEATURE_SERVO > 0 && UI_SERVO_CONTROL > 0 if(c2 == 'S') { addInt(servoPosition, 4); break; } #endif #if FEATURE_BABYSTEPPING if(c2 == 'Y') { // addInt(zBabySteps,0); addFloat((float)zBabySteps * Printer::invAxisStepsPerMM[Z_AXIS], 2, 2); break; } #endif // Extruder output level if(c2 >= '0' && c2 <= '9') ivalue = pwm_pos[c2 - '0']; #if HAVE_HEATED_BED else if(c2 == 'b') ivalue = pwm_pos[heatedBedController.pwmIndex]; #endif else if(c2 == 'C') ivalue = pwm_pos[Extruder::current->id]; ivalue = (ivalue * 100) / 255; addInt(ivalue, 3); if(col < MAX_COLS) uid.printCols[col++] = '%'; break; case 's': // Endstop positions if(c2 == 'x') { #if (X_MIN_PIN > -1) && MIN_HARDWARE_ENDSTOP_X addStringOnOff(Endstops::xMin()); #else addStringP(ui_text_na); #endif } if(c2 == 'X') #if (X_MAX_PIN > -1) && MAX_HARDWARE_ENDSTOP_X addStringOnOff(Endstops::xMax()); #else addStringP(ui_text_na); #endif if(c2 == 'y') #if (Y_MIN_PIN > -1)&& MIN_HARDWARE_ENDSTOP_Y addStringOnOff(Endstops::yMin()); #else addStringP(ui_text_na); #endif if(c2 == 'Y') #if (Y_MAX_PIN > -1) && MAX_HARDWARE_ENDSTOP_Y addStringOnOff(Endstops::yMax()); #else addStringP(ui_text_na); #endif if(c2 == 'z') #if (Z_MIN_PIN > -1) && MIN_HARDWARE_ENDSTOP_Z addStringOnOff(Endstops::zMin()); #else addStringP(ui_text_na); #endif if(c2=='Z') #if (Z_MAX_PIN > -1) && MAX_HARDWARE_ENDSTOP_Z addStringOnOff(Endstops::zMax()); #else addStringP(ui_text_na); #endif if(c2=='P') #if (Z_PROBE_PIN > -1) addStringOnOff(Endstops::zProbe()); #else addStringP(ui_text_na); #endif break; case 'S': if(c2 >= 'x' && c2 <= 'z') addFloat(Printer::axisStepsPerMM[c2 - 'x'], 3, 1); if(c2 == 'e') addFloat(Extruder::current->stepsPerMM, 3, 1); break; case 'U': if(c2 == 't') // Printing time { #if EEPROM_MODE bool alloff = true; for(uint8_t i = 0; i < NUM_EXTRUDER; i++) if(tempController[i]->targetTemperatureC > 15) alloff = false; long seconds = (alloff ? 0 : (HAL::timeInMilliseconds() - Printer::msecondsPrinting) / 1000) + HAL::eprGetInt32(EPR_PRINTING_TIME); long tmp = seconds / 86400; seconds -= tmp * 86400; addInt(tmp, 5); addStringP(PSTR(UI_TEXT_PRINTTIME_DAYS)); tmp = seconds / 3600; addInt(tmp,2); addStringP(PSTR(UI_TEXT_PRINTTIME_HOURS)); seconds -= tmp * 3600; tmp = seconds / 60; addInt(tmp,2,'0'); addStringP(PSTR(UI_TEXT_PRINTTIME_MINUTES)); #endif } else if(c2 == 'f') // Filament usage { #if EEPROM_MODE float dist = Printer::filamentPrinted * 0.001 + HAL::eprGetFloat(EPR_PRINTING_DISTANCE); #else float dist = Printer::filamentPrinted * 0.001; #endif addFloat(dist, 6, 1); } break; case 'x': if(c2>='0' && c2<='4') { if(c2=='4') // this sequence save 14 bytes of flash { addFloat(Printer::filamentPrinted * 0.001,3,2); break; } if(c2=='0') fvalue = Printer::realXPosition(); else if(c2=='1') fvalue = Printer::realYPosition(); else if(c2=='2') fvalue = Printer::realZPosition(); else fvalue = (float)Printer::currentPositionSteps[E_AXIS] * Printer::invAxisStepsPerMM[E_AXIS]; addFloat(fvalue,4,2); } break; case 'X': // Extruder related #if NUM_EXTRUDER>0 if(c2>='0' && c2<='9') { addStringP(Extruder::current->id==c2-'0'?ui_selected:ui_unselected); } #if TEMP_PID else if(c2=='i') { addFloat(currHeaterForSetup->pidIGain, 4,2); } else if(c2=='p') { addFloat(currHeaterForSetup->pidPGain, 4,2); } else if(c2=='d') { addFloat(currHeaterForSetup->pidDGain, 4,2); } else if(c2=='m') { addInt(currHeaterForSetup->pidDriveMin, 3); } else if(c2=='M') { addInt(currHeaterForSetup->pidDriveMax, 3); } else if(c2=='D') { addInt(currHeaterForSetup->pidMax, 3); } #endif else if(c2=='w') { addInt(Extruder::current->watchPeriod,4); } #if RETRACT_DURING_HEATUP else if(c2=='T') { addInt(Extruder::current->waitRetractTemperature,4); } else if(c2=='U') { addInt(Extruder::current->waitRetractUnits,2); } #endif else if(c2=='h') { uint8_t hm = currHeaterForSetup->heatManager; if(hm == HTR_PID) addStringP(PSTR(UI_TEXT_STRING_HM_PID)); else if(hm == HTR_DEADTIME) addStringP(PSTR(UI_TEXT_STRING_HM_DEADTIME)); else if(hm == HTR_SLOWBANG) addStringP(PSTR(UI_TEXT_STRING_HM_SLOWBANG)); else addStringP(PSTR(UI_TEXT_STRING_HM_BANGBANG)); } #if USE_ADVANCE #if ENABLE_QUADRATIC_ADVANCE else if(c2=='a') { addFloat(Extruder::current->advanceK, 3, 0); } #endif else if(c2=='l') { addFloat(Extruder::current->advanceL, 3, 0); } #endif else if(c2=='x') { addFloat(Extruder::current->xOffset * Printer::invAxisStepsPerMM[X_AXIS], 3, 2); } else if(c2=='y') { addFloat(Extruder::current->yOffset * Printer::invAxisStepsPerMM[Y_AXIS], 3, 2); } else if(c2=='f') { addFloat(Extruder::current->maxStartFeedrate,5,0); } else if(c2=='F') { addFloat(Extruder::current->maxFeedrate,5,0); } else if(c2=='A') { addFloat(Extruder::current->maxAcceleration,5,0); } #endif break; case 'y': #if DRIVE_SYSTEM==DELTA if(c2>='0' && c2<='3') fvalue = (float)Printer::currentDeltaPositionSteps[c2-'0']*Printer::invAxisStepsPerMM[c2-'0']; addFloat(fvalue,3,2); #endif break; } } uid.printCols[col] = 0; } void UIDisplay::setStatusP(PGM_P txt,bool error) { if(!error && Printer::isUIErrorMessage()) return; uint8_t i=0; while(i<20) { uint8_t c = pgm_read_byte(txt++); if(!c) break; statusMsg[i++] = c; } statusMsg[i]=0; if(error) Printer::setUIErrorMessage(true); } void UIDisplay::setStatus(const char *txt,bool error) { if(!error && Printer::isUIErrorMessage()) return; uint8_t i=0; while(*txt && i<20) statusMsg[i++] = *txt++; statusMsg[i]=0; if(error) Printer::setUIErrorMessage(true); } const UIMenu * const ui_pages[UI_NUM_PAGES] PROGMEM = UI_PAGES; uint16_t nFilesOnCard; void UIDisplay::updateSDFileCount() { #if SDSUPPORT dir_t* p = NULL; byte offset = menuTop[menuLevel]; SdBaseFile *root = sd.fat.vwd(); root->rewind(); nFilesOnCard = 0; while ((p = root->getLongFilename(p, NULL, 0, NULL))) { if (! (DIR_IS_FILE(p) || DIR_IS_SUBDIR(p))) continue; if (folderLevel>=SD_MAX_FOLDER_DEPTH && DIR_IS_SUBDIR(p) && !(p->name[0]=='.' && p->name[1]=='.')) continue; nFilesOnCard++; if (nFilesOnCard > 5000) // Arbitrary maximum, limited only by how long someone would scroll return; } #endif } void getSDFilenameAt(uint16_t filePos,char *filename) { #if SDSUPPORT dir_t* p; SdBaseFile *root = sd.fat.vwd(); root->rewind(); while ((p = root->getLongFilename(p, tempLongFilename, 0, NULL))) { HAL::pingWatchdog(); if (!DIR_IS_FILE(p) && !DIR_IS_SUBDIR(p)) continue; if(uid.folderLevel>=SD_MAX_FOLDER_DEPTH && DIR_IS_SUBDIR(p) && !(p->name[0]=='.' && p->name[1]=='.')) continue; if (filePos--) continue; strcpy(filename, tempLongFilename); if(DIR_IS_SUBDIR(p)) strcat(filename, "/"); // Set marker for directory break; } #endif } bool UIDisplay::isDirname(char *name) { while(*name) name++; name--; return *name=='/'; } void UIDisplay::goDir(char *name) { #if SDSUPPORT char *p = cwd; while(*p)p++; if(name[0]=='.' && name[1]=='.') { if(folderLevel==0) return; p--; p--; while(*p!='/') p--; p++; *p = 0; folderLevel--; } else { if(folderLevel>=SD_MAX_FOLDER_DEPTH) return; while(*name) *p++ = *name++; *p = 0; folderLevel++; } sd.fat.chdir(cwd); updateSDFileCount(); #endif } void sdrefresh(uint16_t &r,char cache[UI_ROWS][MAX_COLS+1]) { #if SDSUPPORT dir_t* p = NULL; uint16_t offset = uid.menuTop[uid.menuLevel]; SdBaseFile *root; uint16_t length, skip; sd.fat.chdir(uid.cwd); root = sd.fat.vwd(); root->rewind(); skip = (offset > 0 ? offset - 1 : 0); while (r + offset < nFilesOnCard + 1 && r < UI_ROWS && (p = root->getLongFilename(p, tempLongFilename, 0, NULL))) { HAL::pingWatchdog(); // done if past last used entry // skip deleted entry and entries for . and .. // only list subdirectories and files if ((DIR_IS_FILE(p) || DIR_IS_SUBDIR(p))) { if(uid.folderLevel >= SD_MAX_FOLDER_DEPTH && DIR_IS_SUBDIR(p) && !(p->name[0]=='.' && p->name[1]=='.')) continue; if(skip > 0) { skip--; continue; } uid.col = 0; if(r + offset == uid.menuPos[uid.menuLevel]) uid.printCols[uid.col++] = CHAR_SELECTOR; else uid.printCols[uid.col++] = ' '; // print file name with possible blank fill if(DIR_IS_SUBDIR(p)) uid.printCols[uid.col++] = bFOLD; // Prepend folder symbol length = RMath::min((int)strlen(tempLongFilename), MAX_COLS - uid.col); memcpy(uid.printCols + uid.col, tempLongFilename, length); uid.col += length; uid.printCols[uid.col] = 0; strcpy(cache[r++],uid.printCols); } } #endif } // Refresh current menu page void UIDisplay::refreshPage() { #if UI_DISPLAY_TYPE == DISPLAY_GAMEDUINO2 GD2::refresh(); #else uint16_t r; uint8_t mtype = UI_MENU_TYPE_INFO; char cache[UI_ROWS][MAX_COLS + 1]; adjustMenuPos(); #if UI_AUTORETURN_TO_MENU_AFTER!=0 // Reset timeout on menu back when user active on menu if (uid.encoderLast != encoderStartScreen) ui_autoreturn_time = HAL::timeInMilliseconds() + UI_AUTORETURN_TO_MENU_AFTER; #endif encoderStartScreen = uid.encoderLast; // Copy result into cache if(menuLevel == 0) // Top level menu { UIMenu *men = (UIMenu*)pgm_read_word(&(ui_pages[menuPos[0]])); uint16_t nr = pgm_read_word_near(&(men->numEntries)); UIMenuEntry **entries = (UIMenuEntry**)pgm_read_word(&(men->entries)); for(r = 0; r < nr && r < UI_ROWS; r++) { UIMenuEntry *ent = (UIMenuEntry *)pgm_read_word(&(entries[r])); col = 0; parse((char*)pgm_read_word(&(ent->text)),false); strcpy(cache[r],uid.printCols); } } else { UIMenu *men = (UIMenu*)menu[menuLevel]; uint16_t nr = pgm_read_word_near((void*)&(men->numEntries)); mtype = pgm_read_byte((void*)&(men->menuType)); uint16_t offset = menuTop[menuLevel]; UIMenuEntry **entries = (UIMenuEntry**)pgm_read_word(&(men->entries)); for(r = 0; r + offset < nr && r < UI_ROWS; ) { UIMenuEntry *ent =(UIMenuEntry *)pgm_read_word(&(entries[r+offset])); if(!ent->showEntry()) { offset++; continue; } uint8_t entType = pgm_read_byte(&(ent->menuType)); uint16_t entAction = pgm_read_word(&(ent->action)); col = 0; if(entType >= 2 && entType <= 4) { if(r + offset == menuPos[menuLevel] && activeAction != entAction) uid.printCols[col++] = CHAR_SELECTOR; else if(activeAction == entAction) uid.printCols[col++] = CHAR_SELECTED; else uid.printCols[col++]=' '; } parse((char*)pgm_read_word(&(ent->text)),false); if(entType == 2) // Draw submenu marker at the right side { while(colUI_COLS) { uid.printCols[RMath::min(UI_COLS-1,col)] = CHAR_RIGHT; } else uid.printCols[col] = CHAR_RIGHT; // Arrow right uid.printCols[++col] = 0; } strcpy(cache[r],uid.printCols); r++; } } #if SDSUPPORT if(mtype == UI_MENU_TYPE_FILE_SELECTOR) { sdrefresh(r,cache); } #endif uid.printCols[0] = 0; while(r < UI_ROWS) // delete trailing empty rows strcpy(cache[r++],uid.printCols); // cache now contains the data to show // Compute transition uint8_t transition = 0; // 0 = display, 1 = up, 2 = down, 3 = left, 4 = right #if UI_ANIMATION if(menuLevel != oldMenuLevel && !PrintLine::hasLines()) { if(oldMenuLevel == 0 || oldMenuLevel == -2) transition = 1; else if(menuLevel == 0) transition = 2; else if(menuLevel>oldMenuLevel) transition = 3; else transition = 4; } #endif uint8_t loops = 1; uint8_t dt = 1,y; if(transition == 1 || transition == 2) loops = UI_ROWS; else if(transition > 2) { dt = (UI_COLS + UI_COLS - 1) / 16; loops = UI_COLS + 1 / dt; } uint8_t off0 = (shift <= 0 ? 0 : shift); uint8_t scroll = dt; uint8_t off[UI_ROWS]; if(transition == 0) // Copy cache to displayCache { for(y = 0; y < UI_ROWS; y++) strcpy(displayCache[y],cache[y]); } for(y = 0; y < UI_ROWS; y++) { uint8_t len = strlen(displayCache[y]); // length of line content off[y] = len > UI_COLS ? RMath::min(len - UI_COLS,off0) : 0; if(len > UI_COLS) { off[y] = RMath::min(len - UI_COLS,off0); if(transition == 0 && (mtype == UI_MENU_TYPE_FILE_SELECTOR || mtype == UI_MENU_TYPE_SUBMENU)) // Copy first char to front { //displayCache[y][off[y]] = displayCache[y][0]; cache[y][off[y]] = cache[y][0]; } } else off[y] = 0; #if UI_ANIMATION if(transition == 3) { for(r = len; r < MAX_COLS; r++) { displayCache[y][r] = 32; } displayCache[y][MAX_COLS] = 0; } else if(transition == 4) { for(r = strlen(cache[y]); r < MAX_COLS; r++) { cache[y][r] = 32; } cache[y][MAX_COLS] = 0; } #endif } for(uint8_t l = 0; l 0) cache[0][0] = Printer::isAnimation()?'\x08':'\x09'; else cache[0][0] = '\x0a'; //off #if NUM_EXTRUDER>1 if(pwm_pos[extruder[1].tempControl.pwmIndex] > 0) cache[1][0] = Printer::isAnimation()?'\x08':'\x09'; else cache[1][0] = '\x0a'; //off #endif #if HAVE_HEATED_BED //heatbed animated icons uint8_t lin = 2 - ((NUM_EXTRUDER < 2) ? 1 : 0); if(pwm_pos[heatedBedController.pwmIndex] > 0) cache[lin][0] = Printer::isAnimation() ? '\x0c' : '\x0d'; else cache[lin][0] = '\x0b'; #endif #if FAN_PIN>-1 && FEATURE_FAN_CONTROL //fan fanPercent = Printer::getFanSpeed() * 100 / 255; fanString[1] = 0; if(fanPercent > 0) //fan running anmation { fanString[0] = Printer::isAnimation() ? '\x0e' : '\x0f'; } else { fanString[0] = '\x0e'; } #endif #if SDSUPPORT //SD Card if(sd.sdactive) { if(sd.sdactive && sd.sdmode) { if(sd.filesize < 20000000) sdPercent = sd.sdpos * 100 / sd.filesize; else sdPercent = (sd.sdpos >> 8) * 100 / (sd.filesize >> 8); } else { sdPercent = 0; } } #endif } #endif //u8g picture loop u8g_FirstPage(&u8g); do { #endif if(transition == 0) { #if UI_DISPLAY_TYPE == DISPLAY_U8G if(menuLevel == 0 && menuPos[0] == 0 ) { u8g_SetFont(&u8g,UI_FONT_SMALL); uint8_t py = 8; for(uint8_t r = 0; r < 3; r++) { if(u8g_IsBBXIntersection(&u8g, 0, py-UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT)) printU8GRow(0, py, cache[r]); py += 10; } #if FAN_PIN>-1 && FEATURE_FAN_CONTROL //fan if(u8g_IsBBXIntersection(&u8g, 0, 30 - UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT)) printU8GRow(117,30,fanString); drawVProgressBar(116, 0, 9, 20, fanPercent); if(u8g_IsBBXIntersection(&u8g, 0, 42 - UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT)) printU8GRow(0,42,cache[3]); //mul + extruded if(u8g_IsBBXIntersection(&u8g, 0, 52 - UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT)) printU8GRow(0,52,cache[4]); //buf #endif #if SDSUPPORT //SD Card if(sd.sdactive && u8g_IsBBXIntersection(&u8g, 66, 52 - UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT)) { printU8GRow(66,52,"SD"); drawHProgressBar(79,46, 46, 6, sdPercent); } #endif //Status py = u8g_GetHeight(&u8g) - 2; if(u8g_IsBBXIntersection(&u8g, 70, py - UI_FONT_SMALL_HEIGHT, 1, UI_FONT_SMALL_HEIGHT)) printU8GRow(0,py,cache[5]); //divider lines u8g_DrawHLine(&u8g,0, 32, u8g_GetWidth(&u8g)); if ( u8g_IsBBXIntersection(&u8g, 54, 0, 1, 55) ) { u8g_draw_vline(&u8g,112, 0, 32); u8g_draw_vline(&u8g,62, 0, 54); } u8g_SetFont(&u8g, UI_FONT_DEFAULT); } else { #endif for(y = 0; y < UI_ROWS; y++) printRow(y, &cache[y][off[y]], NULL, UI_COLS); #if UI_DISPLAY_TYPE == DISPLAY_U8G } #endif } #if UI_ANIMATION else { if(transition == 1) // up { if(scroll > UI_ROWS) { scroll = UI_ROWS; l = loops; } for(y = 0; y < UI_ROWS - scroll; y++) { r = y + scroll; printRow(y, &displayCache[r][off[r]], NULL, UI_COLS); } for(y = 0; y < scroll; y++) { printRow(UI_ROWS - scroll + y,cache[y], NULL, UI_COLS); } } else if(transition == 2) // down { if(scroll > UI_ROWS) { scroll = UI_ROWS; l = loops; } for(y = 0; y < scroll; y++) { printRow(y, cache[UI_ROWS - scroll + y], NULL, UI_COLS); } for(y = 0; y < UI_ROWS - scroll; y++) { r = y + scroll; printRow(y + scroll, &displayCache[y][off[y]], NULL, UI_COLS); } } else if(transition == 3) // left { if(scroll > UI_COLS) { scroll = UI_COLS; l = loops; } for(y = 0; y < UI_ROWS; y++) { printRow(y,&displayCache[y][off[y] + scroll], cache[y], UI_COLS - scroll); } } else // right { if(scroll > UI_COLS) { scroll = UI_COLS; l = loops; } for(y = 0; y < UI_ROWS; y++) { printRow(y, cache[y] + UI_COLS - scroll, &displayCache[y][off[y]], scroll); } } #if UI_DISPLAY_TYPE != DISPLAY_U8G HAL::delayMilliseconds(transition < 3 ? 200 : 70); #endif HAL::pingWatchdog(); } #endif #if UI_DISPLAY_TYPE == DISPLAY_U8G } while( u8g_NextPage(&u8g) ); //end picture loop Printer::toggleAnimation(); #endif } // for l #if UI_ANIMATION // copy to last cache if(transition != 0) for(y = 0; y < UI_ROWS; y++) strcpy(displayCache[y], cache[y]); oldMenuLevel = menuLevel; #endif #endif } void UIDisplay::pushMenu(const UIMenu *men, bool refresh) { if(men == menu[menuLevel]) { refreshPage(); return; } if(menuLevel == 4) return; // Max. depth reached. No more memory to down further. menuLevel++; menu[menuLevel] = men; menuTop[menuLevel] = menuPos[menuLevel] = 0; #if SDSUPPORT UIMenu *men2 = (UIMenu*)menu[menuLevel]; if(pgm_read_byte(&(men2->menuType)) == 1) { // Menu is Open files list updateSDFileCount(); // Keep menu positon in file list, more user friendly. // If file list changed, still need to reset position. if (menuPos[menuLevel] > nFilesOnCard) { //This exception can happen if the card was unplugged or modified. menuTop[menuLevel] = 0; menuPos[menuLevel] = UI_MENU_BACKCNT; // if top entry is back, default to next useful item } } else #endif { // With or without SDCARD, being here means the menu is not a files list // Reset menu to top menuTop[menuLevel] = 0; menuPos[menuLevel] = UI_MENU_BACKCNT; // if top entry is back, default to next useful item } if(refresh) refreshPage(); } void UIDisplay::popMenu(bool refresh) { if(menuLevel > 0) menuLevel--; Printer::setAutomount(false); activeAction = 0; if(refresh) refreshPage(); } int UIDisplay::okAction(bool allowMoves) { if(Printer::isUIErrorMessage()) { Printer::setUIErrorMessage(false); return 0; } BEEP_SHORT #if UI_HAS_KEYS == 1 if(menuLevel == 0) // Enter menu { menuLevel = 1; menuTop[1] = 0; menuPos[1] = UI_MENU_BACKCNT; // if top entry is back, default to next useful item menu[1] = &ui_menu_main; return 0; } UIMenu *men = (UIMenu*)menu[menuLevel]; //uint8_t nr = pgm_read_word_near(&(menu->numEntries)); uint8_t mtype = pgm_read_byte(&(men->menuType)); UIMenuEntry **entries; UIMenuEntry *ent; unsigned char entType; int action; #if SDSUPPORT if(mtype == UI_MENU_TYPE_FILE_SELECTOR) { if(menuPos[menuLevel] == 0) // Selected back instead of file { return executeAction(UI_ACTION_BACK, allowMoves); } if(!sd.sdactive) return 0; uint8_t filePos = menuPos[menuLevel] - 1; char filename[LONG_FILENAME_LENGTH + 1]; getSDFilenameAt(filePos, filename); if(isDirname(filename)) // Directory change selected { goDir(filename); menuTop[menuLevel] = 0; menuPos[menuLevel] = 1; refreshPage(); oldMenuLevel = -1; return 0; } int16_t shortAction; // renamed to avoid scope confusion if (Printer::isAutomount()) shortAction = UI_ACTION_SD_PRINT; else { men = menu[menuLevel - 1]; entries = (UIMenuEntry**)pgm_read_word(&(men->entries)); ent =(UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel-1]])); shortAction = pgm_read_word(&(ent->action)); } sd.file.close(); sd.fat.chdir(cwd); EVENT_START_UI_ACTION(shortAction); switch(shortAction) { case UI_ACTION_SD_PRINT: if (sd.selectFile(filename, false)) { sd.startPrint(); BEEP_LONG; menuLevel = 0; } break; case UI_ACTION_SD_DELETE: if(sd.sdactive) { sd.sdmode = 0; sd.file.close(); if(sd.fat.remove(filename)) { Com::printFLN(Com::tFileDeleted); BEEP_LONG if(menuPos[menuLevel] > 0) menuPos[menuLevel]--; updateSDFileCount(); } else { Com::printFLN(Com::tDeletionFailed); } } break; } return 0; } #endif entries = (UIMenuEntry**)pgm_read_word(&(men->entries)); ent =(UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]])); entType = pgm_read_byte(&(ent->menuType));// 0 = Info, 1 = Headline, 2 = submenu ref, 3 = direct action command, 4 = modify action action = pgm_read_word(&(ent->action)); if(mtype == UI_MENU_TYPE_MODIFICATION_MENU) // action menu { action = pgm_read_word(&(men->id)); finishAction(action); return executeAction(UI_ACTION_BACK, true); } if(mtype == UI_MENU_TYPE_SUBMENU && entType == 4) // Modify action { if(activeAction) // finish action { finishAction(action); activeAction = 0; } else activeAction = action; return 0; } if(mtype == UI_MENU_TYPE_WIZARD) { action = pgm_read_word(&(men->id)); switch(action) { #if FEATURE_RETRACTION case UI_ACTION_WIZARD_FILAMENTCHANGE: // filament change is finished // BEEP_SHORT; popMenu(true); Extruder::current->retractDistance(EEPROM_FLOAT(RETRACTION_LENGTH)); #if FILAMENTCHANGE_REHOME #if Z_HOME_DIR > 0 Printer::homeAxis(true, true, FILAMENTCHANGE_REHOME == 2); #else Printer::homeAxis(true, true, false); #endif #endif Printer::GoToMemoryPosition(true, true, false, false, Printer::homingFeedrate[X_AXIS]); Printer::GoToMemoryPosition(false, false, true, false, Printer::homingFeedrate[Z_AXIS]); Extruder::current->retractDistance(-EEPROM_FLOAT(RETRACTION_LENGTH)); Printer::currentPositionSteps[E_AXIS] = Printer::popWizardVar().l; // set e to starting position Printer::setBlockingReceive(false); #if EXTRUDER_JAM_CONTROL Extruder::markAllUnjammed(); #endif Printer::setJamcontrolDisabled(false); break; #if EXTRUDER_JAM_CONTROL case UI_ACTION_WIZARD_JAM_REHEAT: // user saw problem and takes action popMenu(false); pushMenu(&ui_wiz_jamwaitheat, true); Extruder::unpauseExtruders(); popMenu(false); pushMenu(&ui_wiz_filamentchange, true); break; case UI_ACTION_WIZARD_JAM_WAITHEAT: // called while heating - should do nothing user must wait BEEP_LONG; break; #endif // EXTRUDER_JAM_CONTROL #endif } return 0; } if(entType == 2) // Enter submenu { pushMenu((UIMenu*)action, false); // BEEP_SHORT #if FEATURE_BABYSTEPPING zBabySteps = 0; #endif #if HAVE_HEATED_BED if(action == pgm_read_word(&ui_menu_conf_bed.action)) // enter Bed configuration menu currHeaterForSetup = &heatedBedController; else #endif currHeaterForSetup = &(Extruder::current->tempControl); Printer::setMenuMode(MENU_MODE_FULL_PID, currHeaterForSetup->heatManager == 1); Printer::setMenuMode(MENU_MODE_DEADTIME, currHeaterForSetup->heatManager == 3); return 0; } if(entType == 3) { return executeAction(action, allowMoves); } return executeAction(UI_ACTION_BACK, allowMoves); #endif } //#define INCREMENT_MIN_MAX(a,steps,_min,_max) if ( (increment<0) && (_min>=0) && (a<_min-increment*steps) ) {a=_min;} else { a+=increment*steps; if(a<_min) a=_min; else if(a>_max) a=_max;}; // this version not have single byte variable rollover bug #define INCREMENT_MIN_MAX(a,steps,_min,_max) a = constrain((a + increment*steps), _min, _max); void UIDisplay::adjustMenuPos() { if(menuLevel == 0) return; UIMenu *men = (UIMenu*)menu[menuLevel]; UIMenuEntry **entries = (UIMenuEntry**)pgm_read_word(&(men->entries)); uint8_t mtype = HAL::readFlashByte((PGM_P)&(men->menuType)); int numEntries = pgm_read_word(&(men->numEntries)); if(mtype != 2) return; UIMenuEntry *entry; while(menuPos[menuLevel] > 0) // Go up until we reach visible position { entry = (UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]])); if(pgm_read_byte((void*)&(entry->menuType)) == 1) // skip headlines menuPos[menuLevel]--; else if(entry->showEntry()) break; else menuPos[menuLevel]--; } // with bad luck the only visible option was in the opposite direction while(menuPos[menuLevel] < numEntries - 1) // Go down until we reach visible position { entry = (UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]])); if(pgm_read_byte((void*)&(entry->menuType)) == 1) // skip headlines menuPos[menuLevel]++; else if(entry->showEntry()) break; else menuPos[menuLevel]++; } uint8_t skipped = 0; bool modified; if(menuTop[menuLevel] > menuPos[menuLevel]) menuTop[menuLevel] = menuPos[menuLevel]; do { skipped = 0; modified = false; for(uint8_t r = menuTop[menuLevel]; r < menuPos[menuLevel]; r++) { UIMenuEntry *ent = (UIMenuEntry *)pgm_read_word(&(entries[r])); if(!ent->showEntry()) skipped++; } if(menuTop[menuLevel] + skipped + UI_ROWS - 1 < menuPos[menuLevel]) { menuTop[menuLevel] = menuPos[menuLevel] + 1 - UI_ROWS; modified = true; } } while(modified); } bool UIDisplay::isWizardActive() { UIMenu *men = (UIMenu*)menu[menuLevel]; return HAL::readFlashByte((PGM_P)&(men->menuType)) == 5; } bool UIDisplay::nextPreviousAction(int16_t next, bool allowMoves) { if(Printer::isUIErrorMessage()) { Printer::setUIErrorMessage(false); return true; } millis_t actTime = HAL::timeInMilliseconds(); millis_t dtReal; millis_t dt = dtReal = actTime - lastNextPrev; lastNextPrev = actTime; if(dt < SPEED_MAX_MILLIS) dt = SPEED_MAX_MILLIS; if(dt > SPEED_MIN_MILLIS) { dt = SPEED_MIN_MILLIS; lastNextAccumul = 1; } float f = (float)(SPEED_MIN_MILLIS - dt) / (float)(SPEED_MIN_MILLIS - SPEED_MAX_MILLIS); lastNextAccumul = 1.0f + (float)SPEED_MAGNIFICATION * f * f; #if UI_DYNAMIC_ENCODER_SPEED uint16_t dynSp = lastNextAccumul / 16; if(dynSp < 1) dynSp = 1; if(dynSp > 30) dynSp = 30; next *= dynSp; #endif #if UI_HAS_KEYS == 1 if(menuLevel == 0) { lastSwitch = HAL::timeInMilliseconds(); if((UI_INVERT_MENU_DIRECTION && next < 0) || (!UI_INVERT_MENU_DIRECTION && next > 0)) { menuPos[0]++; if(menuPos[0] >= UI_NUM_PAGES) menuPos[0] = 0; } else { menuPos[0] = (menuPos[0] == 0 ? UI_NUM_PAGES - 1 : menuPos[0] - 1); } return true; } UIMenu *men = (UIMenu*)menu[menuLevel]; uint8_t nr = pgm_read_word_near(&(men->numEntries)); uint8_t mtype = HAL::readFlashByte((PGM_P)&(men->menuType)); UIMenuEntry **entries = (UIMenuEntry**)pgm_read_word(&(men->entries)); UIMenuEntry *ent =(UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]])); UIMenuEntry *testEnt; // 0 = Info, 1 = Headline, 2 = submenu ref, 3 = direct action command uint8_t entType = HAL::readFlashByte((PGM_P)&(ent->menuType)); int action = pgm_read_word(&(ent->action)); if(mtype == UI_MENU_TYPE_SUBMENU && activeAction == 0) // browse through menu items { if((UI_INVERT_MENU_DIRECTION && next < 0) || (!UI_INVERT_MENU_DIRECTION && next > 0)) { while(menuPos[menuLevel] + 1 < nr) { menuPos[menuLevel]++; testEnt = (UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]])); if(testEnt->showEntry()) break; } } else if(menuPos[menuLevel] > 0) { while(menuPos[menuLevel] > 0) { menuPos[menuLevel]--; testEnt = (UIMenuEntry *)pgm_read_word(&(entries[menuPos[menuLevel]])); if(testEnt->showEntry()) break; } } shift = -2; // reset shift position adjustMenuPos(); return true; } #if SDSUPPORT if(mtype == UI_MENU_TYPE_FILE_SELECTOR) // SD listing { if((UI_INVERT_MENU_DIRECTION && next < 0) || (!UI_INVERT_MENU_DIRECTION && next > 0)) { menuPos[menuLevel] += abs(next); if(menuPos[menuLevel] > nFilesOnCard) menuPos[menuLevel] = nFilesOnCard; } else if(menuPos[menuLevel] > 0) { if(menuPos[menuLevel] > abs(next)) menuPos[menuLevel] -= abs(next); else menuPos[menuLevel] = 0; } if(menuTop[menuLevel] > menuPos[menuLevel]) menuTop[menuLevel] = menuPos[menuLevel]; else if(menuTop[menuLevel] + UI_ROWS - 1 < menuPos[menuLevel]) menuTop[menuLevel] = menuPos[menuLevel] + 1 - UI_ROWS; shift = -2; // reset shift position return true; } #endif if(mtype == UI_MENU_TYPE_MODIFICATION_MENU || mtype == UI_MENU_TYPE_WIZARD) action = pgm_read_word(&(men->id)); else action = activeAction; int8_t increment = next; EVENT_START_NEXTPREVIOUS(action,increment); switch(action) { case UI_ACTION_FANSPEED: Commands::setFanSpeed(Printer::getFanSpeed() + increment * 3,false); break; case UI_ACTION_XPOSITION: if(!allowMoves) return false; #if UI_SPEEDDEPENDENT_POSITIONING { float d = 0.01*(float)increment * lastNextAccumul; if(fabs(d) * 1000 > Printer::maxFeedrate[X_AXIS] * dtReal) d *= Printer::maxFeedrate[X_AXIS]*dtReal / (1000 * fabs(d)); long steps = (long)(d * Printer::axisStepsPerMM[X_AXIS]); steps = ( increment < 0 ? RMath::min(steps,(long)increment) : RMath::max(steps,(long)increment)); PrintLine::moveRelativeDistanceInStepsReal(steps,0,0,0,Printer::maxFeedrate[X_AXIS],false); } #else PrintLine::moveRelativeDistanceInStepsReal(increment,0,0,0,Printer::homingFeedrate[X_AXIS],false); #endif Commands::printCurrentPosition(PSTR("UI_ACTION_XPOSITION ")); break; case UI_ACTION_YPOSITION: if(!allowMoves) return false; #if UI_SPEEDDEPENDENT_POSITIONING { float d = 0.01 * (float)increment * lastNextAccumul; if(fabs(d) * 1000 > Printer::maxFeedrate[Y_AXIS] * dtReal) d *= Printer::maxFeedrate[Y_AXIS] * dtReal / (1000 * fabs(d)); long steps = (long)(d * Printer::axisStepsPerMM[Y_AXIS]); steps = ( increment < 0 ? RMath::min(steps,(long)increment) : RMath::max(steps,(long)increment)); PrintLine::moveRelativeDistanceInStepsReal(0,steps,0,0,Printer::maxFeedrate[Y_AXIS],false); } #else PrintLine::moveRelativeDistanceInStepsReal(0,increment,0,0,Printer::homingFeedrate[Y_AXIS],false); #endif Commands::printCurrentPosition(PSTR("UI_ACTION_YPOSITION ")); break; case UI_ACTION_ZPOSITION_NOTEST: if(!allowMoves) return false; Printer::setNoDestinationCheck(true); goto ZPOS1; case UI_ACTION_ZPOSITION: if(!allowMoves) return false; ZPOS1: #if UI_SPEEDDEPENDENT_POSITIONING { float d = 0.01 * (float)increment * lastNextAccumul; if(fabs(d) * 1000 > Printer::maxFeedrate[Z_AXIS] * dtReal) d *= Printer::maxFeedrate[Z_AXIS] * dtReal / (1000 * fabs(d)); long steps = (long)(d * Printer::axisStepsPerMM[Z_AXIS]); steps = ( increment<0 ? RMath::min(steps,(long)increment) : RMath::max(steps,(long)increment)); PrintLine::moveRelativeDistanceInStepsReal(0,0,steps,0,Printer::maxFeedrate[Z_AXIS],false); } #else PrintLine::moveRelativeDistanceInStepsReal(0, 0, ((long)increment * Printer::axisStepsPerMM[Z_AXIS]) / 100, 0, Printer::homingFeedrate[Z_AXIS],false); #endif Printer::setNoDestinationCheck(false); Commands::printCurrentPosition(PSTR("UI_ACTION_ZPOSITION ")); break; case UI_ACTION_XPOSITION_FAST: if(!allowMoves) return false; PrintLine::moveRelativeDistanceInStepsReal(Printer::axisStepsPerMM[X_AXIS] * increment,0,0,0,Printer::homingFeedrate[X_AXIS],true); Commands::printCurrentPosition(PSTR("UI_ACTION_XPOSITION_FAST ")); break; case UI_ACTION_YPOSITION_FAST: if(!allowMoves) return false; PrintLine::moveRelativeDistanceInStepsReal(0,Printer::axisStepsPerMM[Y_AXIS] * increment,0,0,Printer::homingFeedrate[Y_AXIS],true); Commands::printCurrentPosition(PSTR("UI_ACTION_YPOSITION_FAST ")); break; case UI_ACTION_ZPOSITION_FAST_NOTEST: if(!allowMoves) return false; Printer::setNoDestinationCheck(true); goto ZPOS2; case UI_ACTION_ZPOSITION_FAST: if(!allowMoves) return false; ZPOS2: PrintLine::moveRelativeDistanceInStepsReal(0,0,Printer::axisStepsPerMM[Z_AXIS] * increment,0,Printer::homingFeedrate[Z_AXIS],true); Printer::setNoDestinationCheck(false); Commands::printCurrentPosition(PSTR("UI_ACTION_ZPOSITION_FAST ")); break; case UI_ACTION_EPOSITION: if(!allowMoves) return false; PrintLine::moveRelativeDistanceInSteps(0,0,0,Printer::axisStepsPerMM[E_AXIS]*increment / Printer::extrusionFactor,UI_SET_EXTRUDER_FEEDRATE,true,false); Commands::printCurrentPosition(PSTR("UI_ACTION_EPOSITION ")); break; #if FEATURE_RETRACTION case UI_ACTION_WIZARD_FILAMENTCHANGE: // filament change is finished Extruder::current->retractDistance(-increment); Commands::waitUntilEndOfAllMoves(); Extruder::current->disableCurrentExtruderMotor(); break; #endif case UI_ACTION_Z_BABYSTEPS: #if FEATURE_BABYSTEPPING { previousMillisCmd = HAL::timeInMilliseconds(); if((abs((int)Printer::zBabystepsMissing + (increment * BABYSTEP_MULTIPLICATOR))) < 127) { Printer::zBabystepsMissing += increment * BABYSTEP_MULTIPLICATOR; zBabySteps += increment * BABYSTEP_MULTIPLICATOR; } } #endif break; case UI_ACTION_HEATED_BED_TEMP: #if HAVE_HEATED_BED { int tmp = (int)heatedBedController.targetTemperatureC; if(tmp < UI_SET_MIN_HEATED_BED_TEMP) tmp = 0; if(tmp == 0 && increment > 0) tmp = UI_SET_MIN_HEATED_BED_TEMP; else tmp += increment; if(tmp < UI_SET_MIN_HEATED_BED_TEMP) tmp = 0; else if(tmp > UI_SET_MAX_HEATED_BED_TEMP) tmp = UI_SET_MAX_HEATED_BED_TEMP; Extruder::setHeatedBedTemperature(tmp); } #endif break; #if NUM_EXTRUDER>2 case UI_ACTION_EXTRUDER2_TEMP: #endif #if NUM_EXTRUDER>1 case UI_ACTION_EXTRUDER1_TEMP: #endif case UI_ACTION_EXTRUDER0_TEMP: { int tmp = (int)extruder[action - UI_ACTION_EXTRUDER0_TEMP].tempControl.targetTemperatureC; if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = 0; if(tmp == 0 && increment > 0) tmp = UI_SET_MIN_EXTRUDER_TEMP; else tmp += increment; if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = 0; else if(tmp > UI_SET_MAX_EXTRUDER_TEMP) tmp = UI_SET_MAX_EXTRUDER_TEMP; Extruder::setTemperatureForExtruder(tmp, action - UI_ACTION_EXTRUDER0_TEMP); } break; case UI_ACTION_FEEDRATE_MULTIPLY: { int fr = Printer::feedrateMultiply; INCREMENT_MIN_MAX(fr,1,25,500); Commands::changeFeedrateMultiply(fr); } break; case UI_ACTION_FLOWRATE_MULTIPLY: { INCREMENT_MIN_MAX(Printer::extrudeMultiply,1,25,500); Commands::changeFlowrateMultiply(Printer::extrudeMultiply); } break; case UI_ACTION_STEPPER_INACTIVE: { uint8_t inactT = stepperInactiveTime / 60000; INCREMENT_MIN_MAX(inactT,1,0,240); stepperInactiveTime = inactT * 60000; } break; case UI_ACTION_MAX_INACTIVE: { uint8_t inactT = maxInactiveTime / 60000; INCREMENT_MIN_MAX(inactT,1,0,240); maxInactiveTime = inactT * 60000; } break; case UI_ACTION_PRINT_ACCEL_X: case UI_ACTION_PRINT_ACCEL_Y: case UI_ACTION_PRINT_ACCEL_Z: #if DRIVE_SYSTEM!=DELTA INCREMENT_MIN_MAX(Printer::maxAccelerationMMPerSquareSecond[action - UI_ACTION_PRINT_ACCEL_X],((action == UI_ACTION_PRINT_ACCEL_Z) ? 1 : 100),0,10000); #else INCREMENT_MIN_MAX(Printer::maxAccelerationMMPerSquareSecond[action - UI_ACTION_PRINT_ACCEL_X],100,0,10000); #endif Printer::updateDerivedParameter(); break; case UI_ACTION_MOVE_ACCEL_X: case UI_ACTION_MOVE_ACCEL_Y: case UI_ACTION_MOVE_ACCEL_Z: #if DRIVE_SYSTEM != DELTA INCREMENT_MIN_MAX(Printer::maxTravelAccelerationMMPerSquareSecond[action - UI_ACTION_MOVE_ACCEL_X],((action == UI_ACTION_MOVE_ACCEL_Z) ? 1 : 100),0,10000); #else INCREMENT_MIN_MAX(Printer::maxTravelAccelerationMMPerSquareSecond[action - UI_ACTION_MOVE_ACCEL_X],100,0,10000); #endif Printer::updateDerivedParameter(); break; case UI_ACTION_MAX_JERK: INCREMENT_MIN_MAX(Printer::maxJerk,0.1,1,99.9); break; #if DRIVE_SYSTEM != DELTA case UI_ACTION_MAX_ZJERK: INCREMENT_MIN_MAX(Printer::maxZJerk,0.1,0.1,99.9); break; #endif case UI_ACTION_HOMING_FEEDRATE_X: case UI_ACTION_HOMING_FEEDRATE_Y: case UI_ACTION_HOMING_FEEDRATE_Z: INCREMENT_MIN_MAX(Printer::homingFeedrate[action - UI_ACTION_HOMING_FEEDRATE_X], 1, 1, 1000); break; case UI_ACTION_MAX_FEEDRATE_X: case UI_ACTION_MAX_FEEDRATE_Y: case UI_ACTION_MAX_FEEDRATE_Z: INCREMENT_MIN_MAX(Printer::maxFeedrate[action - UI_ACTION_MAX_FEEDRATE_X], 1, 1, 1000); break; case UI_ACTION_STEPS_X: case UI_ACTION_STEPS_Y: case UI_ACTION_STEPS_Z: INCREMENT_MIN_MAX(Printer::axisStepsPerMM[action - UI_ACTION_STEPS_X], 0.1, 0, 999); Printer::updateDerivedParameter(); break; case UI_ACTION_BAUDRATE: #if EEPROM_MODE != 0 { char p = 0; int32_t rate; do { rate = pgm_read_dword(&(baudrates[p])); if(rate == baudrate) break; p++; } while(rate != 0); if(rate == 0) p -= 2; p += increment; if(p < 0) p = 0; if(p > sizeof(baudrates)/4 - 2) p = sizeof(baudrates)/4 - 2; baudrate = pgm_read_dword(&(baudrates[p])); } #endif break; case UI_ACTION_SERVOPOS: #if FEATURE_SERVO > 0 && UI_SERVO_CONTROL > 0 INCREMENT_MIN_MAX(servoPosition, 5, 500, 2500); HAL::servoMicroseconds(UI_SERVO_CONTROL - 1, servoPosition, 500); #endif break; #if TEMP_PID case UI_ACTION_PID_PGAIN: INCREMENT_MIN_MAX(currHeaterForSetup->pidPGain, 0.1, 0, 200); break; case UI_ACTION_PID_IGAIN: INCREMENT_MIN_MAX(currHeaterForSetup->pidIGain, 0.01, 0, 100); if(&Extruder::current->tempControl == currHeaterForSetup) Extruder::selectExtruderById(Extruder::current->id); break; case UI_ACTION_PID_DGAIN: INCREMENT_MIN_MAX(currHeaterForSetup->pidDGain, 0.1, 0, 200); break; case UI_ACTION_DRIVE_MIN: INCREMENT_MIN_MAX(currHeaterForSetup->pidDriveMin, 1, 1, 255); break; case UI_ACTION_DRIVE_MAX: INCREMENT_MIN_MAX(currHeaterForSetup->pidDriveMax, 1, 1, 255); break; case UI_ACTION_PID_MAX: INCREMENT_MIN_MAX(currHeaterForSetup->pidMax, 1, 1, 255); break; #endif case UI_ACTION_X_OFFSET: INCREMENT_MIN_MAX(Extruder::current->xOffset, 1, -99999, 99999); Extruder::selectExtruderById(Extruder::current->id); break; case UI_ACTION_Y_OFFSET: INCREMENT_MIN_MAX(Extruder::current->yOffset, 1, -99999, 99999); Extruder::selectExtruderById(Extruder::current->id); break; case UI_ACTION_EXTR_STEPS: INCREMENT_MIN_MAX(Extruder::current->stepsPerMM, 0.1, 1, 9999); Extruder::selectExtruderById(Extruder::current->id); break; case UI_ACTION_EXTR_ACCELERATION: INCREMENT_MIN_MAX(Extruder::current->maxAcceleration, 10, 10, 99999); Extruder::selectExtruderById(Extruder::current->id); break; case UI_ACTION_EXTR_MAX_FEEDRATE: INCREMENT_MIN_MAX(Extruder::current->maxFeedrate, 1, 1, 999); Extruder::selectExtruderById(Extruder::current->id); break; case UI_ACTION_EXTR_START_FEEDRATE: INCREMENT_MIN_MAX(Extruder::current->maxStartFeedrate, 1, 1, 999); Extruder::selectExtruderById(Extruder::current->id); break; case UI_ACTION_EXTR_HEATMANAGER: INCREMENT_MIN_MAX(currHeaterForSetup->heatManager, 1, 0, 3); Printer::setMenuMode(MENU_MODE_FULL_PID, currHeaterForSetup->heatManager == 1); // show PIDS only with PID controller selected Printer::setMenuMode(MENU_MODE_DEADTIME, currHeaterForSetup->heatManager == 3); break; case UI_ACTION_EXTR_WATCH_PERIOD: INCREMENT_MIN_MAX(Extruder::current->watchPeriod, 1, 0, 999); break; #if RETRACT_DURING_HEATUP case UI_ACTION_EXTR_WAIT_RETRACT_TEMP: INCREMENT_MIN_MAX(Extruder::current->waitRetractTemperature, 1, 100, UI_SET_MAX_EXTRUDER_TEMP); break; case UI_ACTION_EXTR_WAIT_RETRACT_UNITS: INCREMENT_MIN_MAX(Extruder::current->waitRetractUnits, 1, 0, 99); break; #endif #if USE_ADVANCE #if ENABLE_QUADRATIC_ADVANCE case UI_ACTION_ADVANCE_K: INCREMENT_MIN_MAX(Extruder::current->advanceK, 1, 0, 200); break; #endif case UI_ACTION_ADVANCE_L: INCREMENT_MIN_MAX(Extruder::current->advanceL, 1, 0, 600); break; #endif } #if UI_AUTORETURN_TO_MENU_AFTER!=0 ui_autoreturn_time = HAL::timeInMilliseconds() + UI_AUTORETURN_TO_MENU_AFTER; #endif #endif return true; } void UIDisplay::finishAction(int action) { } // Actions are events from user input. Depending on the current state, each // action can behave differently. Other actions do always the same like home, disable extruder etc. int UIDisplay::executeAction(int action, bool allowMoves) { int ret = 0; #if UI_HAS_KEYS == 1 if(action & UI_ACTION_TOPMENU) // Go to start menu { action -= UI_ACTION_TOPMENU; menuLevel = 0; } if(action >= 2000 && action < 3000) { setStatusP(ui_action); } else switch(action) { case UI_ACTION_OK: ret = okAction(allowMoves); break; case UI_ACTION_BACK: if(uid.isWizardActive()) break; // wizards can not exit before finished popMenu(false); break; case UI_ACTION_NEXT: if(!nextPreviousAction(1, allowMoves)) ret = UI_ACTION_NEXT; break; case UI_ACTION_PREVIOUS: if(!nextPreviousAction(-1, allowMoves)) ret = UI_ACTION_PREVIOUS; break; case UI_ACTION_MENU_UP: if(menuLevel > 0) menuLevel--; break; case UI_ACTION_TOP_MENU: menuLevel = 0; break; case UI_ACTION_EMERGENCY_STOP: Commands::emergencyStop(); break; case UI_ACTION_HOME_ALL: if(!allowMoves) return UI_ACTION_HOME_ALL; Printer::homeAxis(true, true, true); Commands::printCurrentPosition(PSTR("UI_ACTION_HOMEALL ")); break; case UI_ACTION_HOME_X: if(!allowMoves) return UI_ACTION_HOME_X; Printer::homeAxis(true, false, false); Commands::printCurrentPosition(PSTR("UI_ACTION_HOME_X ")); break; case UI_ACTION_HOME_Y: if(!allowMoves) return UI_ACTION_HOME_Y; Printer::homeAxis(false, true, false); Commands::printCurrentPosition(PSTR("UI_ACTION_HOME_Y ")); break; case UI_ACTION_HOME_Z: if(!allowMoves) return UI_ACTION_HOME_Z; Printer::homeAxis(false, false, true); Commands::printCurrentPosition(PSTR("UI_ACTION_HOME_Z ")); break; case UI_ACTION_SET_ORIGIN: if(!allowMoves) return UI_ACTION_SET_ORIGIN; Printer::setOrigin(0, 0, 0); break; case UI_ACTION_DEBUG_ECHO: Printer::debugLevel ^= 1; break; case UI_ACTION_DEBUG_INFO: Printer::debugLevel ^= 2; break; case UI_ACTION_DEBUG_ERROR: Printer::debugLevel ^= 4; break; case UI_ACTION_DEBUG_DRYRUN: Printer::debugLevel ^= 8; if(Printer::debugDryrun()) // simulate movements without printing { Extruder::setTemperatureForExtruder(0, 0); #if NUM_EXTRUDER > 1 Extruder::setTemperatureForExtruder(0, 1); #endif #if NUM_EXTRUDER > 2 Extruder::setTemperatureForExtruder(0, 2); #endif #if HAVE_HEATED_BED Extruder::setHeatedBedTemperature(0); #endif } break; case UI_ACTION_POWER: #if PS_ON_PIN >= 0 // avoid compiler errors when the power supply pin is disabled Commands::waitUntilEndOfAllMoves(); //SET_OUTPUT(PS_ON_PIN); //GND TOGGLE(PS_ON_PIN); #endif break; #if CASE_LIGHTS_PIN >= 0 case UI_ACTION_LIGHTS_ONOFF: TOGGLE(CASE_LIGHTS_PIN); Printer::reportCaseLightStatus(); UI_STATUS(UI_TEXT_LIGHTS_ONOFF); break; #endif case UI_ACTION_PREHEAT_PLA: UI_STATUS(UI_TEXT_PREHEAT_PLA); Extruder::setTemperatureForExtruder(UI_SET_PRESET_EXTRUDER_TEMP_PLA,0); #if NUM_EXTRUDER > 1 Extruder::setTemperatureForExtruder(UI_SET_PRESET_EXTRUDER_TEMP_PLA,1); #endif #if NUM_EXTRUDER > 2 Extruder::setTemperatureForExtruder(UI_SET_PRESET_EXTRUDER_TEMP_PLA,2); #endif #if HAVE_HEATED_BED Extruder::setHeatedBedTemperature(UI_SET_PRESET_HEATED_BED_TEMP_PLA); #endif break; case UI_ACTION_PREHEAT_ABS: UI_STATUS(UI_TEXT_PREHEAT_ABS); Extruder::setTemperatureForExtruder(UI_SET_PRESET_EXTRUDER_TEMP_ABS,0); #if NUM_EXTRUDER > 1 Extruder::setTemperatureForExtruder(UI_SET_PRESET_EXTRUDER_TEMP_ABS,1); #endif #if NUM_EXTRUDER > 2 Extruder::setTemperatureForExtruder(UI_SET_PRESET_EXTRUDER_TEMP_ABS,2); #endif #if HAVE_HEATED_BED Extruder::setHeatedBedTemperature(UI_SET_PRESET_HEATED_BED_TEMP_ABS); #endif break; case UI_ACTION_COOLDOWN: UI_STATUS(UI_TEXT_COOLDOWN); Extruder::setTemperatureForExtruder(0, 0); #if NUM_EXTRUDER > 1 Extruder::setTemperatureForExtruder(0, 1); #endif #if NUM_EXTRUDER > 2 Extruder::setTemperatureForExtruder(0, 2); #endif #if HAVE_HEATED_BED Extruder::setHeatedBedTemperature(0); #endif break; case UI_ACTION_HEATED_BED_OFF: #if HAVE_HEATED_BED Extruder::setHeatedBedTemperature(0); #endif break; case UI_ACTION_EXTRUDER0_OFF: #if NUM_EXTRUDER > 1 case UI_ACTION_EXTRUDER1_OFF: #endif #if NUM_EXTRUDER>2 case UI_ACTION_EXTRUDER2_OFF: #endif Extruder::setTemperatureForExtruder(0, action - UI_ACTION_EXTRUDER0_OFF); break; case UI_ACTION_DISABLE_STEPPER: Printer::kill(true); break; case UI_ACTION_RESET_EXTRUDER: Printer::currentPositionSteps[E_AXIS] = 0; break; case UI_ACTION_EXTRUDER_RELATIVE: Printer::relativeExtruderCoordinateMode=!Printer::relativeExtruderCoordinateMode; break; case UI_ACTION_SELECT_EXTRUDER0: #if NUM_EXTRUDER > 1 case UI_ACTION_SELECT_EXTRUDER1: #endif #if NUM_EXTRUDER > 2 case UI_ACTION_SELECT_EXTRUDER2: #endif if(!allowMoves) return action; Extruder::selectExtruderById(action - UI_ACTION_SELECT_EXTRUDER0); currHeaterForSetup = &(Extruder::current->tempControl); Printer::setMenuMode(MENU_MODE_FULL_PID, currHeaterForSetup->heatManager == 1); Printer::setMenuMode(MENU_MODE_DEADTIME, currHeaterForSetup->heatManager == 3); break; #if EEPROM_MODE != 0 case UI_ACTION_STORE_EEPROM: EEPROM::storeDataIntoEEPROM(false); pushMenu(&ui_menu_eeprom_saved, false); BEEP_LONG; break; case UI_ACTION_LOAD_EEPROM: EEPROM::readDataFromEEPROM(true); Extruder::selectExtruderById(Extruder::current->id); pushMenu(&ui_menu_eeprom_loaded, false); BEEP_LONG; break; #endif #if SDSUPPORT case UI_ACTION_SD_DELETE: if(sd.sdactive) { pushMenu(&ui_menu_sd_fileselector, false); } else { UI_ERROR(UI_TEXT_NOSDCARD); } break; case UI_ACTION_SD_PRINT: if(sd.sdactive) { pushMenu(&ui_menu_sd_fileselector, false); } break; case UI_ACTION_SD_PAUSE: if(!allowMoves) ret = UI_ACTION_SD_PAUSE; else sd.pausePrint(true); break; case UI_ACTION_SD_CONTINUE: if(!allowMoves) ret = UI_ACTION_SD_CONTINUE; else sd.continuePrint(true); break; case UI_ACTION_SD_PRI_PAU_CONT: if(!allowMoves) ret = UI_ACTION_SD_PRI_PAU_CONT; else { if(Printer::isMenuMode(MENU_MODE_SD_PRINTING + MENU_MODE_SD_PAUSED)) sd.continuePrint(); else if(Printer::isMenuMode(MENU_MODE_SD_PRINTING)) sd.pausePrint(true); else if(sd.sdactive) pushMenu(&ui_menu_sd_fileselector,false); } break; case UI_ACTION_SD_STOP: if(!allowMoves) ret = UI_ACTION_SD_STOP; else sd.stopPrint(); break; case UI_ACTION_SD_UNMOUNT: sd.unmount(); break; case UI_ACTION_SD_MOUNT: sd.mount(); break; case UI_ACTION_MENU_SDCARD: pushMenu(&ui_menu_sd, false); break; #endif #if FAN_PIN>-1 && FEATURE_FAN_CONTROL case UI_ACTION_FAN_OFF: case UI_ACTION_FAN_25: case UI_ACTION_FAN_50: case UI_ACTION_FAN_75: Commands::setFanSpeed((action - UI_ACTION_FAN_OFF) * 64, false); break; case UI_ACTION_FAN_FULL: Commands::setFanSpeed(255, false); break; case UI_ACTION_FAN_SUSPEND: { static uint8_t lastFanSpeed = 255; if(Printer::getFanSpeed()==0) Commands::setFanSpeed(lastFanSpeed,false); else { lastFanSpeed = Printer::getFanSpeed(); Commands::setFanSpeed(0,false); } } break; case UI_ACTION_IGNORE_M106: Printer::flag2 ^= PRINTER_FLAG2_IGNORE_M106_COMMAND; break; #endif case UI_ACTION_MENU_XPOS: pushMenu(&ui_menu_xpos, false); break; case UI_ACTION_MENU_YPOS: pushMenu(&ui_menu_ypos, false); break; case UI_ACTION_MENU_ZPOS: pushMenu(&ui_menu_zpos, false); break; case UI_ACTION_MENU_XPOSFAST: pushMenu(&ui_menu_xpos_fast, false); break; case UI_ACTION_MENU_YPOSFAST: pushMenu(&ui_menu_ypos_fast, false); break; case UI_ACTION_MENU_ZPOSFAST: pushMenu(&ui_menu_zpos_fast, false); break; case UI_ACTION_MENU_QUICKSETTINGS: pushMenu(&ui_menu_quick, false); break; case UI_ACTION_MENU_EXTRUDER: pushMenu(&ui_menu_extruder, false); break; case UI_ACTION_MENU_POSITIONS: pushMenu(&ui_menu_positions, false); break; #ifdef UI_USERMENU1 case UI_ACTION_SHOW_USERMENU1: pushMenu(&UI_USERMENU1, false); break; #endif #ifdef UI_USERMENU2 case UI_ACTION_SHOW_USERMENU2: pushMenu(&UI_USERMENU2, false); break; #endif #ifdef UI_USERMENU3 case UI_ACTION_SHOW_USERMENU3: pushMenu(&UI_USERMENU3, false); break; #endif #ifdef UI_USERMENU4 case UI_ACTION_SHOW_USERMENU4: pushMenu(&UI_USERMENU4, false); break; #endif #ifdef UI_USERMENU5 case UI_ACTION_SHOW_USERMENU5: pushMenu(&UI_USERMENU5, false); break; #endif #ifdef UI_USERMENU6 case UI_ACTION_SHOW_USERMENU6: pushMenu(&UI_USERMENU6, false); break; #endif #ifdef UI_USERMENU7 case UI_ACTION_SHOW_USERMENU7: pushMenu(&UI_USERMENU7, false); break; #endif #ifdef UI_USERMENU8 case UI_ACTION_SHOW_USERMENU8: pushMenu(&UI_USERMENU8, false); break; #endif #ifdef UI_USERMENU9 case UI_ACTION_SHOW_USERMENU9: pushMenu(&UI_USERMENU9, false); break; #endif #ifdef UI_USERMENU10 case UI_ACTION_SHOW_USERMENU10: pushMenu(&UI_USERMENU10, false); break; #endif #if FEATURE_RETRACTION case UI_ACTION_WIZARD_FILAMENTCHANGE: { if(Printer::isBlockingReceive()) break; Printer::setJamcontrolDisabled(true); Com::printFLN(PSTR("important: Filament change required!")); Printer::setBlockingReceive(true); BEEP_LONG; pushMenu(&ui_wiz_filamentchange, true); Printer::resetWizardStack(); Printer::pushWizardVar(Printer::currentPositionSteps[E_AXIS]); Printer::MemoryPosition(); Extruder::current->retractDistance(FILAMENTCHANGE_SHORTRETRACT); float newZ = FILAMENTCHANGE_Z_ADD + Printer::currentPosition[Z_AXIS]; Printer::currentPositionSteps[E_AXIS] = 0; Printer::moveToReal(Printer::currentPosition[X_AXIS], Printer::currentPosition[Y_AXIS], newZ, 0, Printer::homingFeedrate[Z_AXIS]); Printer::moveToReal(FILAMENTCHANGE_X_POS, FILAMENTCHANGE_Y_POS, newZ, 0, Printer::homingFeedrate[X_AXIS]); Extruder::current->retractDistance(FILAMENTCHANGE_LONGRETRACT); Extruder::current->disableCurrentExtruderMotor(); } break; #if EXTRUDER_JAM_CONTROL case UI_ACTION_WIZARD_JAM_EOF: { Extruder::markAllUnjammed(); Printer::setJamcontrolDisabled(true); Printer::setBlockingReceive(true); pushMenu(&ui_wiz_jamreheat, true); Printer::resetWizardStack(); Printer::pushWizardVar(Printer::currentPositionSteps[E_AXIS]); Printer::MemoryPosition(); Extruder::current->retractDistance(FILAMENTCHANGE_SHORTRETRACT); float newZ = FILAMENTCHANGE_Z_ADD + Printer::currentPosition[Z_AXIS]; Printer::currentPositionSteps[E_AXIS] = 0; Printer::moveToReal(Printer::currentPosition[X_AXIS], Printer::currentPosition[Y_AXIS], newZ, 0, Printer::homingFeedrate[Z_AXIS]); Printer::moveToReal(FILAMENTCHANGE_X_POS, FILAMENTCHANGE_Y_POS, newZ, 0, Printer::homingFeedrate[X_AXIS]); //Extruder::current->retractDistance(FILAMENTCHANGE_LONGRETRACT); Extruder::pauseExtruders(); Commands::waitUntilEndOfAllMoves(); #if FILAMENTCHANGE_REHOME Printer::disableXStepper(); Printer::disableYStepper(); #if Z_HOME_DIR > 0 && FILAMENTCHANGE_REHOME == 2 Printer::disableZStepper(); #endif #endif } break; #endif // EXTRUDER_JAM_CONTROL #endif // FEATURE_RETRACTION case UI_ACTION_X_UP: case UI_ACTION_X_DOWN: if(!allowMoves) return action; PrintLine::moveRelativeDistanceInStepsReal(((action == UI_ACTION_X_UP) ? 1.0 : -1.0) * Printer::axisStepsPerMM[X_AXIS], 0, 0, 0, Printer::homingFeedrate[X_AXIS], false); break; case UI_ACTION_Y_UP: case UI_ACTION_Y_DOWN: if(!allowMoves) return action; PrintLine::moveRelativeDistanceInStepsReal(0, ((action == UI_ACTION_Y_UP) ? 1.0 : -1.0) * Printer::axisStepsPerMM[Y_AXIS], 0, 0, Printer::homingFeedrate[Y_AXIS], false); break; case UI_ACTION_Z_UP: case UI_ACTION_Z_DOWN: if(!allowMoves) return action; PrintLine::moveRelativeDistanceInStepsReal(0, 0, ((action == UI_ACTION_Z_UP) ? 1.0 : -1.0) * Printer::axisStepsPerMM[Z_AXIS], 0, Printer::homingFeedrate[Z_AXIS], false); break; case UI_ACTION_EXTRUDER_UP: case UI_ACTION_EXTRUDER_DOWN: if(!allowMoves) return action; PrintLine::moveRelativeDistanceInStepsReal(0, 0, 0, ((action == UI_ACTION_EXTRUDER_UP) ? 1.0 : -1.0) * Printer::axisStepsPerMM[E_AXIS], UI_SET_EXTRUDER_FEEDRATE, false); break; case UI_ACTION_EXTRUDER_TEMP_UP: { int tmp = (int)(Extruder::current->tempControl.targetTemperatureC) + 1; if(tmp == 1) tmp = UI_SET_MIN_EXTRUDER_TEMP; else if(tmp > UI_SET_MAX_EXTRUDER_TEMP) tmp = UI_SET_MAX_EXTRUDER_TEMP; Extruder::setTemperatureForExtruder(tmp, Extruder::current->id); } break; case UI_ACTION_EXTRUDER_TEMP_DOWN: { int tmp = (int)(Extruder::current->tempControl.targetTemperatureC) - 1; if(tmp < UI_SET_MIN_EXTRUDER_TEMP) tmp = 0; Extruder::setTemperatureForExtruder(tmp, Extruder::current->id); } break; case UI_ACTION_HEATED_BED_UP: #if HAVE_HEATED_BED { int tmp = (int)heatedBedController.targetTemperatureC + 1; if(tmp == 1) tmp = UI_SET_MIN_HEATED_BED_TEMP; else if(tmp > UI_SET_MAX_HEATED_BED_TEMP) tmp = UI_SET_MAX_HEATED_BED_TEMP; Extruder::setHeatedBedTemperature(tmp); } #endif break; #if MAX_HARDWARE_ENDSTOP_Z case UI_ACTION_SET_MEASURED_ORIGIN: { Printer::updateCurrentPosition(); Printer::zLength -= Printer::currentPosition[Z_AXIS]; Printer::currentPositionSteps[Z_AXIS] = 0; Printer::updateDerivedParameter(); #if NONLINEAR_SYSTEM transformCartesianStepsToDeltaSteps(Printer::currentPositionSteps, Printer::currentDeltaPositionSteps); #endif Printer::updateCurrentPosition(true); Com::printFLN(Com::tZProbePrinterHeight, Printer::zLength); #if EEPROM_MODE != 0 EEPROM::storeDataIntoEEPROM(false); Com::printFLN(Com::tEEPROMUpdated); #endif Commands::printCurrentPosition(PSTR("UI_ACTION_SET_MEASURED_ORIGIN ")); } break; #endif case UI_ACTION_SET_P1: #if SOFTWARE_LEVELING for (uint8_t i = 0; i < 3; i++) { Printer::levelingP1[i] = Printer::currentPositionSteps[i]; } #endif break; case UI_ACTION_SET_P2: #if SOFTWARE_LEVELING for (uint8_t i = 0; i < 3; i++) { Printer::levelingP2[i] = Printer::currentPositionSteps[i]; } #endif break; case UI_ACTION_SET_P3: #if SOFTWARE_LEVELING for (uint8_t i = 0; i < 3; i++) { Printer::levelingP3[i] = Printer::currentPositionSteps[i]; } #endif break; case UI_ACTION_CALC_LEVEL: #if SOFTWARE_LEVELING int32_t factors[4]; PrintLine::calculatePlane(factors, Printer::levelingP1, Printer::levelingP2, Printer::levelingP3); Com::printFLN(Com::tLevelingCalc); Com::printFLN(Com::tTower1, PrintLine::calcZOffset(factors, Printer::deltaAPosXSteps, Printer::deltaAPosYSteps) * Printer::invAxisStepsPerMM[Z_AXIS]); Com::printFLN(Com::tTower2, PrintLine::calcZOffset(factors, Printer::deltaBPosXSteps, Printer::deltaBPosYSteps) * Printer::invAxisStepsPerMM[Z_AXIS]); Com::printFLN(Com::tTower3, PrintLine::calcZOffset(factors, Printer::deltaCPosXSteps, Printer::deltaCPosYSteps) * Printer::invAxisStepsPerMM[Z_AXIS]); #endif break; case UI_ACTION_HEATED_BED_DOWN: #if HAVE_HEATED_BED { int tmp = (int)heatedBedController.targetTemperatureC - 1; if(tmp < UI_SET_MIN_HEATED_BED_TEMP) tmp = 0; Extruder::setHeatedBedTemperature(tmp); } #endif break; case UI_ACTION_FAN_UP: Commands::setFanSpeed(Printer::getFanSpeed() + 32,false); break; case UI_ACTION_FAN_DOWN: Commands::setFanSpeed(Printer::getFanSpeed() - 32,false); break; case UI_ACTION_KILL: Commands::emergencyStop(); break; case UI_ACTION_RESET: HAL::resetHardware(); break; case UI_ACTION_PAUSE: Com::printFLN(PSTR("RequestPause:")); break; #if FEATURE_AUTOLEVEL case UI_ACTION_AUTOLEVEL_ONOFF: Printer::setAutolevelActive(!Printer::isAutolevelActive()); break; #endif #ifdef DEBUG_PRINT case UI_ACTION_WRITE_DEBUG: Com::printF(PSTR("Buf. Read Idx:"),(int)GCode::bufferReadIndex); Com::printF(PSTR(" Buf. Write Idx:"),(int)GCode::bufferWriteIndex); Com::printF(PSTR(" Comment:"),(int)GCode::commentDetected); Com::printF(PSTR(" Buf. Len:"),(int)GCode::bufferLength); Com::printF(PSTR(" Wait resend:"),(int)GCode::waitingForResend); Com::printFLN(PSTR(" Recv. Write Pos:"),(int)GCode::commandsReceivingWritePosition); Com::printF(PSTR("Min. XY Speed:"),Printer::minimumSpeed); Com::printF(PSTR(" Min. Z Speed:"),Printer::minimumZSpeed); Com::printF(PSTR(" Buffer:"),PrintLine::linesCount); Com::printF(PSTR(" Lines pos:"),(int)PrintLine::linesPos); Com::printFLN(PSTR(" Write Pos:"),(int)PrintLine::linesWritePos); Com::printFLN(PSTR("Wait loop:"),debugWaitLoop); Com::printF(PSTR("sd mode:"),(int)sd.sdmode); Com::printF(PSTR(" pos:"),sd.sdpos); Com::printFLN(PSTR(" of "),sd.filesize); break; #endif case UI_ACTION_TEMP_DEFECT: Printer::setAnyTempsensorDefect(); break; } refreshPage(); #if UI_AUTORETURN_TO_MENU_AFTER!=0 ui_autoreturn_time = HAL::timeInMilliseconds() + UI_AUTORETURN_TO_MENU_AFTER; #endif #endif return ret; } void UIDisplay::mediumAction() { #if UI_HAS_I2C_ENCODER>0 uiCheckSlowEncoder(); #endif } // Gets calles from main tread void UIDisplay::slowAction(bool allowMoves) { millis_t time = HAL::timeInMilliseconds(); uint8_t refresh = 0; #if UI_HAS_KEYS == 1 // delayed action open? if(allowMoves && delayedAction != 0) { executeAction(delayedAction, true); delayedAction = 0; } // Update key buffer InterruptProtectedBlock noInts; if((flags & (UI_FLAG_FAST_KEY_ACTION + UI_FLAG_KEY_TEST_RUNNING)) == 0) { flags |= UI_FLAG_KEY_TEST_RUNNING; noInts.unprotect(); #if defined(UI_I2C_HOTEND_LED) || defined(UI_I2C_HEATBED_LED) || defined(UI_I2C_FAN_LED) { // check temps and set appropriate leds int led = 0; #if NUM_EXTRUDER>0 && defined(UI_I2C_HOTEND_LED) led |= (tempController[Extruder::current->id]->targetTemperatureC > 0 ? UI_I2C_HOTEND_LED : 0); #endif #if HAVE_HEATED_BED && defined(UI_I2C_HEATBED_LED) led |= (heatedBedController.targetTemperatureC > 0 ? UI_I2C_HEATBED_LED : 0); #endif #if FAN_PIN>=0 && defined(UI_I2C_FAN_LED) led |= (Printer::getFanSpeed() > 0 ? UI_I2C_FAN_LED : 0); #endif // update the leds uid.outputMask= ~led & (UI_I2C_HEATBED_LED | UI_I2C_HOTEND_LED | UI_I2C_FAN_LED); } #endif int nextAction = 0; uiCheckSlowKeys(nextAction); ui_check_Ukeys(nextAction); if(lastButtonAction != nextAction) { lastButtonStart = time; lastButtonAction = nextAction; noInts.protect(); flags |= UI_FLAG_SLOW_KEY_ACTION; // Mark slow action } noInts.protect(); flags &= ~UI_FLAG_KEY_TEST_RUNNING; } noInts.protect(); if((flags & UI_FLAG_SLOW_ACTION_RUNNING) == 0) { flags |= UI_FLAG_SLOW_ACTION_RUNNING; // Reset click encoder noInts.protect(); int16_t encodeChange = encoderPos; encoderPos = 0; noInts.unprotect(); int newAction; if(encodeChange) // encoder changed { nextPreviousAction(encodeChange, allowMoves); BEEP_SHORT refresh = 1; } if(lastAction != lastButtonAction) { if(lastButtonAction == 0) { if(lastAction >= 2000 && lastAction < 3000) statusMsg[0] = 0; lastAction = 0; noInts.protect(); flags &= ~(UI_FLAG_FAST_KEY_ACTION + UI_FLAG_SLOW_KEY_ACTION); } else if(time - lastButtonStart > UI_KEY_BOUNCETIME) // New key pressed { lastAction = lastButtonAction; BEEP_SHORT if((newAction = executeAction(lastAction, allowMoves)) == 0) { nextRepeat = time + UI_KEY_FIRST_REPEAT; repeatDuration = UI_KEY_FIRST_REPEAT; } else { if(delayedAction == 0) delayedAction = newAction; } } } else if(lastAction < 1000 && lastAction) // Repeatable key { if(time - nextRepeat < 10000) { if(delayedAction == 0) delayedAction = executeAction(lastAction, allowMoves); else executeAction(lastAction, allowMoves); repeatDuration -= UI_KEY_REDUCE_REPEAT; if(repeatDuration < UI_KEY_MIN_REPEAT) repeatDuration = UI_KEY_MIN_REPEAT; nextRepeat = time + repeatDuration; BEEP_SHORT } } noInts.protect(); flags &= ~UI_FLAG_SLOW_ACTION_RUNNING; } noInts.unprotect(); #endif #if UI_AUTORETURN_TO_MENU_AFTER != 0 if(menuLevel > 0 && ui_autoreturn_time < time && !uid.isWizardActive()) // Go to top menu after x seoonds { lastSwitch = time; menuLevel = 0; activeAction = 0; } #endif if(uid.isWizardActive()) previousMillisCmd = HAL::timeInMilliseconds(); // prevent stepper/heater disable from timeout during active wizard if(menuLevel == 0 && time > 4000) // Top menu refresh/switch { if(time - lastSwitch > UI_PAGES_DURATION) { lastSwitch = time; #if !defined(UI_DISABLE_AUTO_PAGESWITCH) || !UI_DISABLE_AUTO_PAGESWITCH menuPos[0]++; if(menuPos[0] >= UI_NUM_PAGES) menuPos[0] = 0; #endif refresh = 1; } else if(time - lastRefresh >= 1000) refresh = 1; } else if(time - lastRefresh >= 800) { UIMenu *men = (UIMenu*)menu[menuLevel]; uint8_t mtype = pgm_read_byte((void*)&(men->menuType)); //if(mtype!=1) refresh = 1; } if(refresh) // does lcd need a refresh? { #if defined(TRY_AUTOREPAIR_LCD_ERRORS) #if defined(HAS_AUTOREPAIR) repairLCD(); #else #error TRY_AUTOREPAIR_LCD_ERRORS is not supported for your display type! #endif #endif if (menuLevel > 1 || Printer::isAutomount()) { shift++; if(shift + UI_COLS > MAX_COLS + 1) shift = -2; } else shift = -2; refreshPage(); lastRefresh = time; } } // Gets called from inside an interrupt with interrupts allowed! void UIDisplay::fastAction() { #if UI_HAS_KEYS == 1 // Check keys InterruptProtectedBlock noInts; if((flags & (UI_FLAG_KEY_TEST_RUNNING + UI_FLAG_SLOW_KEY_ACTION)) == 0) { flags |= UI_FLAG_KEY_TEST_RUNNING; int nextAction = 0; uiCheckKeys(nextAction); // ui_check_Ukeys(nextAction); if(lastButtonAction != nextAction) { lastButtonStart = HAL::timeInMilliseconds(); lastButtonAction = nextAction; flags |= UI_FLAG_FAST_KEY_ACTION; } flags &= ~UI_FLAG_KEY_TEST_RUNNING; } #endif } #if defined(UI_REVERSE_ENCODER) && UI_REVERSE_ENCODER == 1 #if UI_ENCODER_SPEED==0 const int8_t encoder_table[16] PROGMEM = {0,-1,1,0,1,0,0,-1,-1,0,0,1,0,1,-1,0}; // Full speed #elif UI_ENCODER_SPEED==1 const int8_t encoder_table[16] PROGMEM = {0,0,1,0,0,0,0,-1,-1,0,0,0,0,1,0,0}; // Half speed #else const int8_t encoder_table[16] PROGMEM = {0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0}; // Quart speed #endif #else #if UI_ENCODER_SPEED==0 const int8_t encoder_table[16] PROGMEM = {0,1,-1,0,-1,0,0,1,1,0,0,-1,0,-1,1,0}; // Full speed #elif UI_ENCODER_SPEED==1 const int8_t encoder_table[16] PROGMEM = {0,0,-1,0,0,0,0,1,1,0,0,0,0,-1,0,0}; // Half speed #else //const int8_t encoder_table[16] PROGMEM = {0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0}; // Quart speed //const int8_t encoder_table[16] PROGMEM = {0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0}; // Quart speed const int8_t encoder_table[16] PROGMEM = {0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0}; // Quart speed #endif #endif #endif